
Contents
 Introduction
 Purpose of This Guide . v
 Audience. v
 Structure . v
 Syntax Diagram Conventions . vi
 Related Documentation . vi

 1 Introduction
1.1 Overview of Microsoft’s .NET Technology . 1-1
1.2 Overview of .NET Data Providers . 1-1
1.3 Overview of the Dharma SDK .NET Data Provider . 1-1

 2 Installation and Configuration
2.1 System Requirements . 2-1
2.2 Assembly . 2-1
2.3 Installing the Dharma SDK .NET Data Provider . 2-1
2.4 File Location . 2-2

 3 Features
3.1 Data Provider Classes . 3-1
3.2 Connection String . 3-2
3.3 Data Type Mapping . 3-3

3.3.1 Setting Values for Parameters . 3-3
3.3.2 Getting Values from DataReader. 3-4

3.4 Error Messages . 3-4
3.5 Limitations. 3-5

 4 Developing Applications
4.1 Building .NET Applications . 4-1

4.1.1 Importing the DLLs . 4-1
4.1.2 Using the Namespaces . 4-2
4.1.3 Compiling the Application. 4-2

4.2 Connecting to a Dharma SDK Database . 4-2
4.3 Executing an SQL Command . 4-3
4.4 Retrieving Data . 4-3
4.5 Using Stored Procedures . 4-4
4.6 Performing Transactions . 4-5
4.7 Populating a DataSet . 4-6
4.8 Using Parameters. 4-7
4.9 Using Stored Procedures with Parameters. 4-7
4.10 Exception Handling . 4-8

 5 Data Provider Class Reference
5.1 DharmaException . 5-1
5.2 DharmaErrorCollection . 5-2
5.3 DharmaError . 5-2

 A Error Messages
 B Sample Programs
i

B.1 Retrieving Data .B-1
B.2 Using Parameters. .B-2

 C Glossary
C.1 Terms. .C-1
ii

 .NET Data Provider Guide

July 2005

 Version 9.1

This guide gives an overview of the .NET Data Provider. It describes how to set up and use the
.NET Data Provider to access a Dharma SDK database from .NET applications.

July 2005

© 1988-2005 Dharma Systems, Inc. All rights reserved.

Information in this document is subject to change without notice.

Dharma Systems Inc. shall not be liable for any incidental, direct, special or consequential damages whatsoever arising
out of or relating to this material, even if Dharma Systems Inc. has been advised, knew or should have known of the
possibility of such damages.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The soft-
ware may be used or copied only in accordance with the terms of this agreement. It is against the law to copy this soft-
ware on magnetic tape, disk or any other medium for any purpose other than for backup or archival purposes.

This manual contains information protected by copyright. No part of this manual may be photocopied or reproduced in
any form without prior written consent from Dharma Systems Inc.

Use, duplication, or disclosure whatsoever by the Government shall be expressly subject to restrictions as set forth in
subdivision (b)(3)(ii) for restricted rights in computer software and subdivision (b)(2) for limited rights in technical
data, both as set in 52.227-7013.

Dharma Systems welcomes your comments on this document and the software it describes. Send comments to:

 Documentation Comments

 Dharma Systems, Inc.

 Brookline Business Center.

 #55, Route 13

 Brookline, NH 03033

 Phone: 603-732-4001

 Fax: 603-732-4003

 Electronic Mail: support@dharma.com

 Web Page: http://www.dharma.com

Dharma/SQL, Dharma AppLink, Dharma SDK and Dharma Integrator are trademarks of Dharma Systems, Inc.

The following are third-party trademarks:

Microsoft is a registered trademark, and ODBC, Windows, Windows NT, Windows 95 and Windows 2000 are trade-
marks of Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation.

Java, Java Development Kit, Solaris, SPARC, SunOS, and SunSoft are registered trademarks of Sun Microsystems,
Inc.

All other trademarks and registered trademarks are the property of their respective holders.

Introduction

PURPOSE OF THIS GUIDE
This guide gives an overview of the Dharma SDK .NET Data Provider. It describes
how to set up and use the Dharma SDK .NET Data Provider. The Dharma SDK .NET
Data Provider provides access to Dharma SDK databases from .NET applications

AUDIENCE
This guide is directed towards .NET programmers writing database applications using
the Dharma SDK. It assumes knowledge of the .NET Framework and .NET program-
ming languages.

STRUCTURE
This guide contains the following chapters:

Chapter 1 Gives an overview of Microsoft .NET Technology and
introduces the Dharma SDK .NET Data Provider.

Chapter 2 Describes installation and configuration requirements
for the Dharma SDK .NET Data Provider.

Chapter 3 Describes the features of the Dharma SDK .NET Data
Provider.

Chapter 4 Describes various steps involved in developing applica-
tions using the Dharma SDK .NET Data Provider.

Chapter 5 Contains reference on the Dharma SDK .NET Data Pro-
vider specific classes.

Appendix A Lists the error messages in the Dharma SDK .NET Data
Provider.

Appendix B Contains sample programs using the Dharma SDK
.NET Data Provider.

Appendix C Contains a glossary of terms you should know.
Dharma Systems Inc. v

.NET Data Provider
SYNTAX DIAGRAM CONVENTIONS

RELATED DOCUMENTATION
Refer to the following guides for more information:

UPPERCASE Uppercase type denotes reserved words. You must
include reserved words in statements, but they can be
upper or lower case.

lowercase Lowercase type denotes either user-supplied elements
or names of other syntax diagrams. User-supplied ele-
ments include names of tables, host-language variables,
expressions and literals. Syntax diagrams can refer to
each other by name. If a diagram is named, the name
appears in lowercase type above and to the left of the
diagram, followed by a double-colon (for example,
privilege ::). The name of that diagram appears in low-
ercase in diagrams that refer to it.

{ } Braces denote a choice among mandatory elements.
They enclose a set of options, separated by vertical bars
(|). You must choose at least one of the options.

[] Brackets denote an optional element or a choice among
optional elements.

| Vertical bars separate a set of options.

... A horizontal ellipsis denotes that the preceding element
can optionally be repeated any number of times.

() , ; Parentheses and other punctuation marks are required
elements. Enter them as shown in syntax diagrams.

Dharma SDK SQL Reference
Manual

This manual describes syntax and semantics of SQL
language statements and elements for Dharma SDK .

Dharma SDK User Guide This manual describes the Software Development Kit
(SDK).It describes implementing JDBC, ODBC and
.NET access to proprietary data and considerations for
creating a release kit to distribute the completed imple-
mentation.

Dharma SDK ISQL Reference
Manual

This manual provides reference material for the ISQL
interactive tool provided in the Dharma SDK environ-
ment. It also includes a tutorial describing how to use
the ISQL utility.

Dharma SDK ODBC Driver
Guide

This manual describes Dharma SDK support for ODBC
(Open Database Connectivity) interface and how to
configure the Dharma SDK ODBC Driver.
vi Dharma Systems Inc.

Introduction
Dharma SDK JDBC Driver
Guide

Describes Dharma SDK support for the JDBC interface
and how to configure the Dharma SDK JDBC Driver.

Dharma SDK .NET Data Pro-
vider Guide

This guide gives an overview of the .NET Data Pro-
vider. It describes how to set up and use the .NET Data
Provider to access a Dharma SDK database from .NET
applications.
Dharma Systems Inc. vii

.NET Data Provider
viii Dharma Systems Inc.

Chapter 1

Introduction

This chapter introduces the Dharma SDK .NET Data Provider, an implementation of
the Data Provider interfaces of Microsoft for accessing the Dharma SDK environment
from .NET applications.

This chapter contains the following topics:

1. Overview of Microsoft’s .NET Technology

2. Overview of .NET Data Providers

3. Overview of the Dharma .NET Data Provider

1.1 OVERVIEW OF MICROSOFT’S .NET TECHNOLOGY
The .NET Framework is a new computing platform that simplifies application devel-
opment in the highly distributed environment of the Internet. ActiveX Data Objects
for the .NET Framework (ADO.NET) is a set of classes that expose data access ser-
vices to the .NET programmer. ADO.NET provides a rich set of components for creat-
ing distributed, disconnected and data-sharing applications. ADO.NET is an integral
part of the .NET Framework, providing relational data access to systems such as
Dharma SDK.

1.2 OVERVIEW OF .NET DATA PROVIDERS
A .NET Data Provider is a bridge used for connecting ADO.NET applications to a
database, executing commands and retrieving results. The .NET Data Provider is
designed to be lightweight, creating a minimal layer between the data source and your
code, thus increasing performance without sacrificing functionality. A .NET Data Pro-
vider consists of a set of classes that implement interfaces specified in Microsoft’s
specification for .NET Data Providers. The Dharma SDK .NET Data Provider, which
is introduced in the next section, is an implementation of a Data Provider for access-
ing the Dharma SDK environment from .NET applications.

1.3 OVERVIEW OF THE DHARMA SDK .NET DATA PROVIDER
The Dharma SDK .NET Data Provider is an implementation of the Data Provider
interfaces of Microsoft for accessing the Dharma SDK environment from .NET
applications. The Dharma SDK .NET Data Provider uses Dharma SDK native APIs to
offer fast and reliable access to Dharma SDK data from any .NET applications. The
Dharma SDK .NET Data Provider also uses and inherits classes and interfaces avail-
able in the Microsoft .NET Framework Class Library. The following figure illustrates
the architecture of data access from a Dharma SDK Database using the Dharma SDK
.NET Data Provider.
Dharma Systems Inc. 1-1

.NET Data Provider
Figure 1-1: Dharma .NET Data Provider Architecture

ASP.NET C# VB.NET C++.NET Any .NET
Client
1-2 Dharma Systems Inc.

Chapter 2

Installation and Configuration

This chapter describes the installation and configuration requirements for the Dharma
SDK .NET Data Provider.

This chapter contains the following topics:

1. System Requirements

2. Assembly

3. Installing the Dharma SDK .NET Data Provider

4. File Location

2.1 SYSTEM REQUIREMENTS
The Dharma SDK .NET Data Provider requires the following:

• Windows 2000 or XP

• Access to Dharma SDK Server 9.0

• Microsoft .NET Framework version 1.1

2.2 ASSEMBLY
The name of the Dharma SDK .NET Data Provider assembly is Dharma.Data.Sql.dll.
It provides the Dharma.Data.Sql namespace. The Dharma.Data.Sql namespace con-
tains the Dharma SDK .NET Data Provider classes.

2.3 INSTALLING THE DHARMA SDK .NET DATA PROVIDER
To install the Dharma SDK .NET Data Provider, execute the SETUP.EXE program
that exists in the root directory of the distribution kit of the Dharma SDK.NET Data
Provider.

When you install the Dharma SDK .NET Data Provider, the installer program auto-
matically installs and registers the provider with the Global Assembly Cache (GAC).

After successful installation you need to register the Dharma SDK .NET Data Pro-
vider components in the Toolbox of VisualStudio.NET by following these steps:

1. Open Visual Studio.NET and go to the Toolbox window.

2. Add a 'DharmaData' tab by right clicking on the General tab and selecting Add
Tab

3. Right click on the 'DharmaData' tab. Select Customize Toolbox... from the dis-
played popup menu.
Dharma Systems Inc. 2-1

.NET Data Provider
4. Go to the .NET Framework Components tab within the opened dialog box.

5. Click on the 'Browse' button on the .NET Framework Components tab and select
the installed DLL (Dharma.Data.Sql.dll).

6. This will add DharmaCommand, DharmaConnection and DharmaDataAdapter in
the .NET Framework Components tab and by default all of them will be selected.

7. Press the OK button.

Once these steps are completed, the components will be available from the toolbox.

See Also: The Dharma SDK User guide for installation instructions.

2.4 FILE LOCATION
The installer program installs Dharma.Data.Sql.dll in the <Dharma SDK Installation
directory>\bin directory.
2-2 Dharma Systems Inc.

Chapter 3

Features

This chapter describes the features of the Dharma SDK .NET Data Provider.

The following topics are covered:

1. Data Provider classes

2. Connection String

3. Data type Mapping

4. Internationalization Support

5. Error Messages

6. Limitations

3.1 DATA PROVIDER CLASSES
The Dharma SDK .NET Data Provider classes in the Dharma.Data.Sql namespace are
listed below.

Table 3-1: Dharma SDK .NET Data Provider Classes

Data Provider Class Description

DharmaConnection This class implements the IDbConnection interface.
Represents an open connection to a data source.

DharmaCommand This class implements the IDbCommand interface.
Represents an SQL statement or stored procedure
to execute against a data source.

DharmaDataReader This class implements the IDataReader interface.
Provides a way of reading a forward-only stream of
data rows from a data source.

DharmaDataAdapter This class implements the IDbDataAdapter inter-
face. Represents a set of data commands and a
connection to a data source that are used to fill the
DataSet and update the data source.

DharmaParameter This class implements the IDbDataParameter inter-
face. Represents a parameter to a DharmaCom-
mand.
Dharma Systems Inc. 3-1

.NET Data Provider
3.2 CONNECTION STRING
This section describes the Name-Value pairs used in forming a connection string to
connect to a Dharma SDK database using the Dharma SDK .NET Data Provider.

The connection string to be passed into the DharmaConnection Object is a set of semi-
colon separated Name-Value pairs.

The following table lists Name-Value pairs used in connection strings for the Dharma
SDK .NET Data Provider. The mandatory values are UID, PWD and Database. If
other values are not specified, default values will be assigned.

DharmaParameterCollection This class implements the IDataParameterCollec-
tion interface. Represents a collection of parame-
ters relevant to DharmaCommand as well as their
respective mappings to columns in a DataSet.

DharmaRowUpdatedEven-
tArgs

Provides data for the RowUpdated event.

DharmaRowUpdatingEven-
tArgs

Provides data for the RowUpdating event.

DharmaTransaction This class implements the IDbTransaction inter-
face. Represents an SQL transaction in the
Dharma SDK Database.

DharmaError Collects information relevant to a warning or error
returned by the Data Provider.

DharmaErrorCollection Collects all errors generated by the Dharma SDK
.NET Data Provider

DharmaException The exception that is generated when a warning or
error is returned by the Dharma SDK .NET Data
Provider.

Table 3-2: Connection string

Name Default Value Description

UID None The user name for login

PWD None The password for the user.

Database None The name of the database.

Server localhost The name of machine on which the Dharma
SDK Server resides.

Service sqlnw Indicates the port number used by the
Dharma Server for listening.

Table 3-1: Dharma SDK .NET Data Provider Classes
3-2 Dharma Systems Inc.

Features
3.3 DATA TYPE MAPPING
The following table lists the mapping between Dharma SDK data types and .NET
Framework types. It also lists DbTypes and .NET Framework typed accessors.

 Note:- NCHAR and NVARCHAR are supported only in the Dharma/SQL product
suites. Information given in this document on Internationalization or Uni-
code support is not applicable for the SDK product. Please contact Dharma
support for further details.

The following sections discuss Dbtype and .NET Framework data types and conver-
sions supported by the Dharma SDK .NET Data Provider

3.3.1 Setting Values for Parameters
The following table gives the preferred .NET data type to be used for setting the
parameter value for Unicode and ANSI character columns. Supported conversions are
also listed.

Table 3-3: Mapping between Dharma SDK Data Types and .NET Framework Types

Dharma SDK Type DbType .NET Framework
Type

.NET Framework
Typed Accessor

Bigint Int64 Int64 GetInt64()

Binary Binary Byte[] GetBytes()

Bit Boolean Boolean GetBoolean()

Character AnsiStringFix-
edLength

Byte/Byte[] GetByte()/GetBytes()

Date DateTime DateTime GetDateTime()

Double precision/
Float

Double Double GetDouble()

Integer Int32 Int32 GetInt32()

Money Decimal Decimal GetDecimal()

Nchar StringFixedLength String GetString()

Nvarchar String String GetString()

Numeric Decimal Decimal GetDecimal()

Real Single Single GetSingle()

Smallint Int16 Int16 GetInt16()

Time Time String GetString()

Timestamp DateTime DateTime GetDateTime()

Tinyint SByte SByte GetInt16()

Varchar AnsiString Byte/Byte[] GetByte()/GetBytes()
Dharma Systems Inc. 3-3

.NET Data Provider
3.3.2 Getting Values from DataReader
The following table gives the preferred typed accessor methods to be used for getting
data from DharmaDataReader object for Unicode and ANSI character columns. Sup-
ported conversions are also mentioned.

3.4 ERROR MESSAGES
Appendix A lists the error messages returned by the Dharma SDK .NET Data Pro-
vider.

Table 3-4: .Net data types to be used for setting Unicode and non-Unicode data

 .NET Data Types

 D
bT

yp
es

String Char/Char[] Byte/Byte[]

AnsiString
AnsiStringFix-
edLength

Supports conver-
sion from Unicode
String to ANSI
characters. UTF-8
is the encoding
scheme used

Supports conver-
sion from Unicode
Char/Char[] to
ANSI characters.
UTF-8 is the
encoding used

Preferred data type
to set non-Unicode
data. No conver-
sion is done.

String
StringFixedLength

Preferred data type
to set Unicode
data. No conver-
sion is done.

Preferred data type
to set Unicode
data. No conver-
sion is done.

Supports conver-
sion from Byte/
Byte[] to Unicode
data. The Byte/
Byte[] would be
treated as UTF-8
encoded.

Table 3-5: .Net accessor methods to be used for getting Unicode and non-Unicode data

 D
bT

yp
es

 .NET Typed Accessor Methods

GetString() GetChar()
GetChars()

GetByte()
GetBytes()

AnsiString
AnsiString Fix-
edLength

Supports conver-
sion from non-Uni-
code data to
Unicode String.
Byte/Byte[]. The
column data would
be treated as UTF-
8 encoded.

Supports conver-
sion from non-Uni-
code data to
Unicode Char/
Char[]. The col-
umn data would be
treated as UTF-8
encoded.

Preferred method
for getting non-Uni-
code data. No con-
version is done.

String
String FixedLength

Preferred method
for getting Unicode
data. No conver-
sion is done.

Preferred method
for getting Unicode
data. No conver-
sion is done.

Supports conver-
sion from Unicode
data to Byte/Byte[].
UTF-8 is the
encoding used.
3-4 Dharma Systems Inc.

Features
3.5 LIMITATIONS
The following table lists the limitations of the Dharma SDK .NET Data Provider

Table 3-6: Limitations of Dharma SDK .NET Data Provider

Feature not Supported Class Remarks

Long data type Not Applicable. Not supported in this release.

GetData() DharmaDataR-
eader

Not supported.

GetSchemaTable() DharmaDataR-
eader

This method will not give key informa-
tion in this release.

ChangeDatabase DharmaConnec-
tion
DharmaCommand

Not supported.

CommandTimeout DharmaConnec-
tion

Not supported.

GetGuid() DharmaDataR-
eader

Not supported.

Cancel() DharmaCommand Cancelling a command will not have
any effect.

Parameter Names DharmaParameter Not supported.

Stored Procedure with
return values

DhParamter Not supported in this release.

Object , Empty, DBNull and
UnIt64 .NET Framework
data types

Not Applicable Not supported in this release.

UInt64 and VarNumeric
DbTypes

Not Applicable Not supported in this release.
Dharma Systems Inc. 3-5

.NET Data Provider
3-6 Dharma Systems Inc.

Chapter 4

Developing Applications

This chapter describes various steps involved in developing applications using the
Dharma SDK .NET Data Provider.

This chapter contains the following topics:

1. Building .NET Applications

2. Connecting to a Dharma SDK Database

3. Executing an SQL Command

4. Retrieving Data

5. Using Stored Procedures

6. Performing Transactions

7. Populating a DataSet

8. Using Parameters

9. Using Stored Procedures with Parameters

10. Exception Handling

4.1 BUILDING .NET APPLICATIONS
The following subsections describe how to build a .NET application.

4.1.1 Importing the DLLs
Import the following DLLs to the .NET application.

1. System.Data.dll

2. Dharma.Data.Sql.dll

For C++ .NET applications, import mscorlib.dll also. The following C++ code
example demonstrates how to import required DLLs into the application.

#using <mscorlib.dll>

#using <System.Data.dll>

#using <Dharma.Data.Sql.dll>

Refer to the .NET Framework SDK documentation of Microsoft to find out how to
import the DLLs in other .NET languages.
Dharma Systems Inc. 4-1

.NET Data Provider
4.1.2 Using the Namespaces
Include the following namespaces in the .NET application.

1. System

2. System.Data

3. Dharma.Data.Sql

The following C++ code example demonstrates how to include the required
namespaces in the application.

using namespace System;

using namespace System::Data;

using namespace Dharma::Data::Sql;

Refer to the .NET Framework SDK documentation of Microsoft to find out how to
include the namespaces in other .NET languages.

4.1.3 Compiling the Application
To compile a C++ application, say, sample.cxx, from the command line, use the fol-
lowing command. Ensure that Dharma.Data.Sql.dll is present in %libpath%.
cl /clr sample.cxx

The compiler generates an executable called sample.exe. Refer to the .NET Frame-
work SDK documentation to find out how to compile the application in other .NET
languages.

4.2 CONNECTING TO A DHARMA SDK DATABASE
The Dharma SDK .NET Data Provider provides connectivity to Dharma SDK Data-
bases using the DharmaConnection object. The Dharma SDK .NET Data Provider
supports a connection string format that is similar to an ODBC connection string for-
mat. For valid string format names and values, see Chapter 3, Section Connection
String.

The following C++ code example demonstrates how to create and open a connection
to a Dharma SDK Database.

// Create a new connection object.

IDbConnection * dhCon = new DharmaConnection
("uid=dharma;pwd=asterix;database=sampledb");

// Open the connection.

dhCon->Open();

Closing the DharmaConnection

You must always close the DharmaConnection object when you are finished using it.
This can be done using the Close() method of the DharmaConnection object.
4-2 Dharma Systems Inc.

Developing Applications
4.3 EXECUTING AN SQL COMMAND
After establishing a connection to the data source, you can execute commands and
return results from the data source using a DharmaCommand object. You can create a
command using the DharmaCommand constructor, which takes optional arguments of
an SQL statement to execute at the data source, a DharmaConnection object and a
DharmaTransaction object. You can also create a command for a particular Dharma-
Connection using the CreateCommand() method of the DharmaConnection object.
The SQL statement of the Command object can be queried and modified using the
CommandText property.

The DharmaCommand object exposes several Execute methods you can use to per-
form the intended action. When returning results as a stream of data, use Exe-
cuteReader() to return a DharmaDataReader object. Use ExecuteScalar() to return a
singleton value. Use ExecuteNonQuery() to execute commands that do not return
rows.

When using the Command object with a stored procedure, you may set the Command-
Type property of the Command object to StoredProcedure. With a CommandType of
StoredProcedure, you may use the Parameters property of the Command to access
input and output parameters and return values. The Parameters property can be
accessed regardless of the Execute method called. However, when calling Exe-
cuteReader(), return values and output parameters will not be accessible until the
DataReader is closed.

The following C++ code example demonstrates how to format a DharmaCommand
object to return a list of regions from the sampledb database.

// Create a new command object.

IDbCommand *dhCmd = new DharmaCommand

("SELECT * FROM region", dhCon);

4.4 RETRIEVING DATA
You can use the DharmaDataReader to retrieve a read-only, forward-only stream of
data from the database.

After creating an instance of the Command object, you create a DharmaDataReader
by calling DharmaCommand.ExecuteReader() to retrieve rows from the data source,
as shown in the following example.

// Execute the command and create a DataReader object.

IDataReader *dhRdr = dhCmd->ExecuteReader();

You use the Read() method of the DharmaDataReader object to obtain a row from the
results of the query. You can access each column of the returned row by passing the
name or ordinal reference of the column to the DharmaDataReader. However, for best
performance, the DharmaDataReader provides a series of methods that allow you to
access column values in their native data types (GetDateTime, GetDouble, GetInt32
and so on). Using the typed accessor methods when the underlying data type is known
will reduce the number of type conversions required when retrieving the column
value.
Dharma Systems Inc. 4-3

.NET Data Provider
The following C++ code example iterates through a DharmaDataReader object and
returns the first two columns from each row.

// Read records and print on the console.

while (dhRdr->Read())

{

Console::WriteLine ("\t{0}\t{1}",

(dhRdr->GetInt32(0)).ToString(),dhRdr->GetString (1));

}

Closing the DharmaDataReader

You should always call the Close() method when you have finished using the Dhar-
maDataReader object.

If your DharmaCommand contains output parameters or return values, they will not be
available until the DharmaDataReader is closed.

Note that while a DharmaDataReader is open, the DharmaConnection is in use exclu-
sively by that DharmaDataReader. You will not be able to execute any commands for
the DharmaConnection, including creating another DharmaDataReader, until the orig-
inal DharmaDataReader is closed.

4.5 USING STORED PROCEDURES
Stored procedures offer many advantages in data-driven applications. Using stored
procedures, database operations can be encapsulated in a single command improving
the performance

To execute a stored procedure, set the CommandType of the DharmaCommand object
to StoredProcedure, as in the following example.

// Create a new connection object.

IDbConnection * dhCon = new DharmaConnection
("uid=dharma;pwd=asterix;database=sampledb");

// Create a new command object.

IDbCommand *dhCmd = new DharmaCommand ("get_regions()”,dhCon);

// Set the command type.

dhCmd->CommandType = CommandType::StoredProcedure;

// Open the connection.

dhCon->Open();

// Execute the command and create a DataReader object.

IDataReader *dhRdr = dhCmd->ExecuteReader();

// Read the resultset returned by the procedure execution

// and print on the console.

while (dhRdr->Read())

{

Console::WriteLine (dhRdr->GetString (0));

}

4-4 Dharma Systems Inc.

Developing Applications
// Close the reader.

dhRdr->Close();

// Close the connection.

dhCon->Close();

4.6 PERFORMING TRANSACTIONS
Transactions are a group of database operations combined into a logical unit of work
and are used to control and maintain the consistency and integrity of the database
despite errors that might occur in the database system.

In ADO.NET, you control transactions using the DharmaConnection and Dhar-
maTransaction objects.

To perform a transaction

1. Call the BeginTransaction method of the DharmaConnection object to mark the
start of the transaction. BeginTransaction returns a reference to the DharmaTrans-
action. Retain this reference so that you can assign it to DharmaCommands that
are used in the transaction.

2. Assign the DharmaTransaction object to the Transaction property of the Dharma-
Commands to be executed. If a DharmaCommand is executed on a DharmaCon-
nection with an active Transaction and the DharmaTransaction object has not been
assigned to the Transaction property of the DharmaCommand, an exception will
be thrown.

3. Execute the required commands.

4. Call the Commit() method of the DharmaTransaction object to complete the trans-
action, or call the Rollback() method to cancel the transaction.

The following C++ code example demonstrates the usage of transactions.

// Create a new connection object.

IDbConnection * dhCon = new DharmaConnection
("uid=dharma;pwd=asterix;database=sampledb");

// Open the connection.

dhCon->Open();

// Begin a Transaction.

IDbTransaction * dhTxn = dhCon->BeginTransaction();

// Create a command.

IDbCommand *dhCmd = dhCon->CreateCommand();

// Enlist the command in the current transaction.

dhCmd->Transaction = dhTxn;

// Set the command text and execute the command.

try

{

dhCmd-> CommandText = "INSERT INTO Region (RegionID,
RegionDescription) VALUES (100, 'Chicago')";
Dharma Systems Inc. 4-5

.NET Data Provider
dhCmd->ExecuteNonQuery();

dhCmd-> CommandText = "INSERT INTO Region (RegionID,
RegionDescription) VALUES (101, 'New york')";

dhCmd->ExecuteNonQuery();

// Commit the changes.

dhTxn->Commit();

Console::WriteLine

 ("Both records have been written to the database.");

}

catch(Exception * e)

{

dhTxn->Rollback();

Console::WriteLine(e->ToString());

Console::WriteLine

("Neither record was written to the database.");

}

4.7 POPULATING A DATASET
The ADO.NET DataSet is a memory-resident representation of data that provides a
consistent relational programming model independent of the data source. Because the
DataSet is independent of the data source, the DataSet can include data local to the
application, as well as data from multiple data sources. Interaction with existing data
sources is controlled through the DharmaDataAdapter.

The DharmaDataAdapter is used to retrieve data from a Dharma SDK Database and
populate tables within a DataSet. The DharmaDataAdapter also resolves changes
made to the DataSet back to the data source. The DharmaDataAdapter uses the Dhar-
maConnection object to connect to a Dharma SDK Database and DharmaCommand
objects to retrieve data from and resolve changes to the data source.

The following code example creates an instance of a DharmaDataAdapter that uses a
DharmaConnection object to connect to the Dharma SDK sampledb database and
populates a DataTable in a DataSet with the list of regions. The SQL statement and
DharmaConnection arguments passed to the DataAdapter constructor are used to cre-
ate the SelectCommand property of the DataAdapter.

// Create a new connection object.

IDbConnection * dhCon = new DharmaConnection
("uid=dharma;pwd=asterix;database=sampledb");

// Open the connection.

dhCon->Open();

// Create a new command object.

IDbCommand *selCmd = new DharmaCommand

(“SELECT * FROM region", dhCon);

// Create an Adapter and set the command.
4-6 Dharma Systems Inc.

Developing Applications
IDbDataAdapter * dhDa = new DharmaDataAdapter();

dhDa->SelectCommand = selCmd;

// Create a data set for regions and fill it.

DataSet * regionDs = new DataSet();

dhDa->Fill(regionDs);

4.8 USING PARAMETERS
The DharmaParameter object is used to execute parameterized queries.

The following example illustrates the usage of parameters.

// Create a new connection object.

IDbConnection * dhCon = new DharmaConnection
("uid=dharma;pwd=asterix;database=sampledb");

// Open the connection.

dhCon->Open();

// Create a new command object.

IDbCommand *dhCmd = new DharmaCommand

("SELECT * FROM region WHERE regionid = ?", dhCon);

// Create a parameter and add to the command.

IDbDataParameter * dhParam = new DharmaParameter();

dhParam->DbType = DbType::Int32;

dhCmd->Parameters->Add(dhParam);

// Prepare the statement.

dhCmd->Prepare();

// Set the value for region id.

dhParam->Value = __box (10);

// Execute the command and create a DataReader object.

IDataReader *dhRdr = dhCmd->ExecuteReader();

// Read records and print on the console.

while (dhRdr->Read())

{

 Console::WriteLine (dhRdr->GetString (1));

}

4.9 USING STORED PROCEDURES WITH PARAMETERS
While a stored procedure can be called by simply passing the stored procedure name
followed by parameter arguments as an SQL statement, using the DharmaParameter-
Dharma Systems Inc. 4-7

.NET Data Provider
Collection in the DharmaCommand object enables you to more explicitly define
stored procedure parameters as well as to access output parameters.

The following example illustrates the usage of a stored procedure with parameters.

// Create a new connection object.

IDbConnection * dhCon = new DharmaConnection
("uid=dharma;pwd=asterix;database=sampledb");

// Create a new command object.

IDbCommand *dhCmd = new DharmaCommand ("get_region(?)”, dhCon);

// Set the command type.

dhCmd->CommandType = CommandType::StoredProcedure;

// Open the connection.

dhCon->Open();

// Construct a parameter and add to the command.

IDbDataParameter * dhParam = new DharmaParameter();

dhParam->DbType = DbType::Int32;

dhCmd->Parameters->Add(dhParam);

// Prepare the statement.

dhCmd->Prepare();

// Set the value for region id.

dhParam->Value = __box (10);

// Execute the command and create a DataReader object.

IDataReader * dhRdr = dhCmd->ExecuteReader();

// Read records and print on the console.

while (dhRdr->Read())

{

 Console::WriteLine (dhRdr->GetString (0));

}

Note:- Stored Procedures are supported only in Dharma/SQL product suites. Please
contact Dharma support for further details on this .

4.10 EXCEPTION HANDLING
The errors generated in the Data Provider are thrown as exceptions. Refer to Chapter 5
for more details. The client application will have to catch the exceptions and then pro-
cess the exceptions.

The following example illustrates the usage of exceptions.

try

{

...
4-8 Dharma Systems Inc.

Developing Applications
// Do some operations.

...

}

catch(ArgumentNullException * ex)

{

Console::WriteLine(ex->ToString());

}

catch(DharmaException * ex)

{

for(int i=0;i < ex->Errors->Count;i++)

{

 Console::WriteLine(ex->Errors->get_Item(i)->Number);

 Console::WriteLine(ex->Errors->get_Item(i)->State);

 Console::WriteLine(ex->Errors->get_Item(i)->Message);

}

}

catch(Exception * ex)

{

 Console::WriteLine(ex->ToString());

}

Dharma Systems Inc. 4-9

.NET Data Provider
4-10 Dharma Systems Inc.

Chapter 5

Data Provider Class Reference

This chapter provides reference material on the Dharma SDK .NET Data Provider
classes to be used for exception and error handling. The Dharma SDK .NET Data Pro-
vider has three classes for exception and error handling - DharmaException, Dhar-
maErrorCollection and DharmaError.

For a detailed description of methods in other classes, refer to Microsoft documenta-
tion on .NET Data Provider interfaces.

This chapter contains the following topics:

1. DharmaException

2. DharmaErrorCollection

3. DharmaError

5.1 DHARMAEXCEPTION
A DharmaException is thrown when the Dharma SDK Data Provider returns an error.
The following table lists the methods and properties in this class.

Table 5-1: DharmaException members

Name Method/Property Description

DharmaErrorCollec-
tion * get_Errors()

Property Gets a collection of type DharmaErrorCollec-
tion of one or more DharmaError objects that
give detailed information about exceptions
generated

String * get_State() Property Gets the SQLSTATE associated with the first
error in the DharmaErrorCollection

int get_Number() Property Gets the error number associated with the
first error in the DharmaErrorCollection

String *
get_Message()

Property Gets the error message associated with the
first error in the DharmaErrorCollection

String *
get_AllMessages()

Property Gets the error messages of all the errors in
the DharmaErrorCollection. In the current
implementation, the DharmaErrorCollection
object contains only one DharmaError
object. Hence, this method returns only one
error message.
Dharma Systems Inc. 5-1

.NET Data Provider
5.2 DHARMAERRORCOLLECTION
DharmaErrorCollection is a collection of DharmaError.

The following table lists the methods and properties in this class.

5.3 DHARMAERROR
DharmaError contains information relevant to an error generated by the provider. One
or more DharmaError objects are managed by the DharmaErrorCollection class,
which in turn is created by the DharmaException class.

The following table lists the methods and properties in this class.

Table 5-2: DharmaErrorCollection Members

Name Method/Property Description

int get_Count() Property Returns the number of DharmaErrors in the
collection.

 DharmaError*
get_Item(int index)

Property Returns the DharmaError at a specified
index.

bool
get_IsSynchronized()

Property Gets a boolean value indicating whether
access to the DharmaError Collection is syn-
chronized or not. Returns false.

Object *
get_SyncRoot()

Property Gets the current object that can be used to
synchronize access to the DharmaErrorCol-
lection.

Table 5-3: DharmaError Members

Name Method/Property Description

String *
get_Message()

Property Returns error message.

int get_Number() Property Returns error number.

String* get_State() Property Returns SQLSTATE.
5-2 Dharma Systems Inc.

Appendix A

Error Messages
This appendix lists the error messages generated by the Dharma SDK .NET Data Pro-
vider.

Table A-1: Error Codes and Messages

Error Code SQLSTATE Error Message

101 S1000 Invalid connection state

102 HYC00 Feature not implemented

103 25S04 Isolation level not supported

104 R9001 Prepared statement expects parameter
value, which is not supplied

105 HY090 Invalid or null connection

106 25S05 Invalid or null transaction

107 42000 Syntax error

108 HY090 Invalid string or buffer length

109 R2001 Command does not have any associated
transaction

110 R3001 Transaction does not belong to the set con-
nection

111 08003 Connection not opened

112 R2001 Command properties missing or not initial-
ized

113 R2001 Connection property not set

114 R2001 CommandText property not set or initialized

115 R1001 Server name exceeds 15 characters

116 R2002 Rolling back not allowed in autocommit on
state

117 R5001 Invalid data type

118 R6001 Invalid size for a parameter

119 R2002 Resetting of connection not allowed after
command is prepared

120 R2003 Prepared command text no longer valid
Dharma Systems Inc. A-1

.NET Data Provider
121 R9001 No memory for allocating SQLDA

122 R4006 GetDateTime() can not be used for fetching
time fields; use GetString()

123 R4007 DataReader is not closed

Table A-1: Error Codes and Messages
A-2 Dharma Systems Inc.

Appendix B

Sample Programs
This appendix provides complete code listings of two sample C++ programs demon-
strating the usage of the Dharma SDK .NET Data Provider.

B.1 RETRIEVING DATA
The following sample program executes a statement and fetches the records from the
database.

/*
 * Copyright (C) Dharma Systems Inc. 1988-2004.
 * Copyright (C) Dharma Systems (P) Ltd. 1988-2004.
 *
 * This Module contains Proprietary Information of
 * Dharma Systems Inc. and Dharma Systems (P) Ltd.
 * and should be treated as Confidential.
 */

/*
 * Purpose : To show execution of a query and fetching rows from its resultset.
 */

#using <mscorlib.dll>
#using <System.dll>
#using <System.Data.dll>
#using <System.Data.dll>
#using <Dharma.Data.Sql.dll>

using namespace System;
using namespace System::IO;
using namespace System::Data;
using namespace Dharma::Data::Sql;

int main()
{

 IDbConnection * dhCon = 0;
 IDbCommand * dhCmd = 0;
 IDataReader * dhRdr = 0;

 try
 {

// Create a new connection object.
dhCon = new DharmaConnection

("uid=dharma;pwd=asterix;database=sampledb");

// Open the connection.
dhCon->Open();
Dharma Systems Inc. B-1

.NET Data Provider
// Create a new command object.
dhCmd = new DharmaCommand ("SELECT * FROM region", dhCon);

// Execute the command and create a DataReader object.
dhRdr = dhCmd->ExecuteReader();

// Read records and print on the console.
while (dhRdr->Read())
{

Console::WriteLine ("\t{0} \t{1}",(dhRdr->GetInt32(0)).ToString(),
 dhRdr->GetString(1));

}
 }
 catch (DharmaException *e)
 {

for(int i=0;i < e->Errors->Count;i++)
{

 Console::WriteLine(e->Errors->Item[i]->Message);
}

 }
 catch (Exception *e)
 {

Console::WriteLine(e->ToString());
 }
 __finally
 {

// Close the reader.
if (dhRdr)

 dhRdr->Close();

// Close the connection.
if (dhCon)

 dhCon->Close();
 }

}

B.2 USING PARAMETERS
The following sample program demonstrates the usage of parameters.

/*
 * Copyright (C) Dharma Systems Inc. 1988-2004.
 * Copyright (C) Dharma Systems (P) Ltd. 1988-2004.
 *
 * This Module contains Proprietary Information of
 * Dharma Systems Inc. and Dharma Systems (P) Ltd.
 * and should be treated as Confidential.
 */

/*
 * Purpose : To demonstrate the usage of parameters.
 */

#using <mscorlib.dll>
#using <System.dll>
#using <System.Data.dll>
#using <System.Data.dll>
#using <Dharma.Data.Sql.dll>
B-2 Dharma Systems Inc.

Sample Programs
using namespace System;
using namespace System::IO;
using namespace System::Data;
using namespace Dharma::Data::Sql;
int main()
{

 IDbConnection * dhCon = 0;
 IDbCommand * dhCmd = 0;
 IDataReader * dhRdr = 0;

 try
 {

// Create a new connection object.
dhCon = new DharmaConnection ("uid=dharma;pwd=asterix;database=sampledb");

// Open the connection.
dhCon->Open();

// Create a new command object.
dhCmd = new DharmaCommand ("get_region(?)", dhCon);
dhCmd->CommandType = CommandType::StoredProcedure;

// Construct a parameter and add to the command.
IDbDataParameter * dhParam = new DharmaParameter();
dhParam->DbType = DbType::Int32;
dhCmd->Parameters->Add(dhParam);

// Prepare the statement.
dhCmd->Prepare();

// Set the value for region id.
dhParam->Value = __box (10);

// Execute the command and create a DataReader object.
dhRdr = dhCmd->ExecuteReader();

// Read records and print on the console.
while (dhRdr->Read())
{
 Console::WriteLine (dhRdr->GetString (0));
}

}
catch (DharmaException *e)
{

for(int i=0;i < e->Errors->Count;i++)
{

 Console::WriteLine(e->Errors->Item[i]->Message);
}

}
catch (Exception *e)
{

Console::WriteLine(e->ToString());
}

 __finally
{

// Close the reader.
if (dhRdr)
Dharma Systems Inc. B-3

.NET Data Provider
 dhRdr->Close();

// Close the connection.
if (dhCon)

 dhCon->Close();
}

}

B-4 Dharma Systems Inc.

Appendix C

Glossary
C.1 TERMS

.NET Data Provider
A .NET Data Provider is a bridge used for connecting ADO.NET applications to a
database, executing commands and retrieving results.

.NET Framework
The .NET Framework is a new computing platform that simplifies application devel-
opment in the highly distributed environment of the Internet.

ANSI Character Set
A character set containing 256 characters, numbered 0 to 255. Values 0 to 127 are the
same as in the ASCII character set. Values 128 to 255 contain European characters
and special characters.

ASCII Character Set
ASCII is the acronym for American Standard Code for Information Interchange, a 7-
bit code that is the U.S. national variant of ISO/IEC 646. Formally, the U.S. standard
ANSI X3.4. ASCII is a code for representing English characters as numbers, with
each letter assigned a number from 0 to 127.

Assembly
A collection of functionality built, versioned, and deployed as a single implementation
unit (one or multiple files). An assembly is the primary building block of a .NET
Framework application. All managed types and resources are marked either as acces-
sible only within their implementation unit or as exported for use by code outside that
unit. In the common language runtime, the assembly establishes the name scope for
resolving requests and the visibility boundaries are enforced. The common language
runtime can determine and locate the assembly for any running object because every
type is loaded in the context of an assembly.

Assembly Cache
A machine-wide code cache used for side-by-side storage of assemblies. There are
two parts to the cache: the global assembly cache contains assemblies that are explic-
itly installed to be shared among many applications on the computer; the download
cache stores code downloaded from Internet or intranet sites, isolated to the applica-
tion that triggered the download so that code downloaded on behalf of one application
or page does not impact other applications. See also: global assembly cache.
Dharma Systems Inc. C-1

.NET Data Provider
Dharma SDK .NET Data Provider
The Dharma SDK .NET Data Provider is an implementation of the Data Provider
interfaces of Microsoft for accessing the Dharma SDK environment from .NET appli-
cations.

Global Assembly Cache (GAC)
A machine-wide code cache that stores assemblies specifically installed to be shared
by many applications on the computer. Applications deployed in the global assembly
cache must have a strong name.

JDBC Driver
Database-specific software that receives calls from the JDBC driver manager, trans-
lates them into a form that the database can process, and returns data to the applica-
tion.

ODBC Driver
Vendor-supplied software that processes ODBC function calls for a specific data
source. The driver connects to the data source, translates the standard SQL statements
into syntax the data source can process and returns data to the application. Dharma
SDK includes an ODBC driver for its internal database system. In addition, there are
ODBC drivers for every major database system.

SQL Engine
The core component of the Dharma SDK database. The SQL engine receives requests
from applications, processes them and returns results. The Dharma SQL engine calls
the storage interfaces to convey requests to an underlying storage system.

SQLSTATE
A 5-character status parameter that indicates the condition status returned by the most
recent SQL statement. SQLSTATE is specified by the SQL-92 standard as a replace-
ment for the SQLCODE status parameter (which was part of SQL-89). SQLSTATE
defines many more specific error conditions than SQLCODE, which allows applica-
tions to implement more portable error handling.

Stored Procedure
A snippet of Java source code embedded in an SQL CREATE PROCEDURE state-
ment. The source code can use all standard Java features as well as use Dharma SDK-
supplied Java classes for processing any number of SQL statements.

Transaction
A group of operations whose changes can be made permanent or undone only as a
unit.

Unicode
Unicode is a universal encoded character set that enables information from any lan-
guage to be stored using a single character set.

UTF-8 Encoding
UTF-8 is a multibyte encoding in which each character can be encoded in as little as
one byte and as many as four bytes.
C-2 Dharma Systems Inc.

Index-i

Index

Symbols
.NET Data Providers 1-1
A
Assembly 2-1
C
Closing the DharmaConnection 4-2
Closing the DharmaDataReader 4-4
Connecting to Dharma/SQL Database 4-2
Connection string 3-2
D
Dharma.Data.Sql.dll 2-2
Dharma/SQL .NET Data Provider 1-1
DharmaCommand 3-1
DharmaConnection 3-1
DharmaDataAdapter 3-1
DharmaDataReader 3-1
DharmaError 3-2
DharmaErrorCollection 3-2, 5-2
DharmaException 3-2, 5-1
DharmaParameter 3-1
DharmaParameterCollection 3-2
DharmaRowUpdatedEventArgs 3-2
DharmaRowUpdatingEventArgs 3-2
DharmaTransaction 3-2
E
Executing a Command 4-3
L
Limitations 3-5
M
Microsoft’s .NET Technology 1-1
P
Performing transactions 4-5
Populating DataSet 4-6
R
Retrieving Data 4-3
U
Using Parameters 4-7
Using Stored Procedures 4-4
Using Stored Procedures with Parameters 4-7

	.NET Data Provider Guide
	Introduction
	Purpose of This Guide
	Audience
	Structure
	Syntax Diagram Conventions
	Related Documentation

	Chapter 1
	Introduction
	1.1 Overview of Microsoft’s .NET Technology
	1.2 Overview of .NET Data Providers
	1.3 Overview of the Dharma SDK .NET Data Provider

	Chapter 2
	Installation and Configuration
	2.1 System Requirements
	2.2 Assembly
	2.3 Installing the Dharma SDK .NET Data Provider
	2.4 File Location

	Chapter 3
	Features
	3.1 Data Provider Classes
	3.2 Connection String
	3.3 Data Type Mapping
	3.3.1 Setting Values for Parameters
	3.3.2 Getting Values from DataReader

	3.4 Error Messages
	3.5 Limitations

	Chapter 4
	Developing Applications
	4.1 Building .NET Applications
	4.1.1 Importing the DLLs
	4.1.2 Using the Namespaces
	4.1.3 Compiling the Application

	4.2 Connecting to a Dharma SDK Database
	4.3 Executing an SQL Command
	4.4 Retrieving Data
	4.5 Using Stored Procedures
	4.6 Performing Transactions
	4.7 Populating a DataSet
	4.8 Using Parameters
	4.9 Using Stored Procedures with Parameters
	4.10 Exception Handling

	Chapter 5
	Data Provider Class Reference
	5.1 DharmaException
	5.2 DharmaErrorCollection
	5.3 DharmaError

	Appendix A
	Error Messages

	Appendix B
	Sample Programs
	B.1 Retrieving Data
	B.2 Using Parameters

	Appendix C
	Glossary
	C.1 Terms

