
JDBC Driver Guide

July 2005

 Version 9.1

This manual gives an overview of the JDBC (Java Database Connectivity) interface and the
Dharma SDK JDBC Driver. It describes how to set up and use the driver and details the
driver's support for the JDBC interface. The JDBC Driver provides access to Dharma SDK
environments from applications that support JDBC.

July 2005

© 1988-2005 Dharma Systems, Inc. All rights reserved.

Information in this document is subject to change without notice.

Dharma Systems Inc. shall not be liable for any incidental, direct, special or consequential damages whatsoever arising
out of or relating to this material, even if Dharma Systems Inc. has been advised, knew or should have known of the
possibility of such damages.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The soft-
ware may be used or copied only in accordance with the terms of this agreement. It is against the law to copy this soft-
ware on magnetic tape, disk or any other medium for any purpose other than for backup or archival purposes.

This manual contains information protected by copyright. No part of this manual may be photocopied or reproduced in
any form without prior written consent from Dharma Systems Inc.

Use, duplication, or disclosure whatsoever by the Government shall be expressly subject to restrictions as set forth in
subdivision (b)(3)(ii) for restricted rights in computer software and subdivision (b)(2) for limited rights in technical
data, both as set in 52.227-7013.

Dharma Systems welcomes your comments on this document and the software it describes. Send comments to:

 Documentation Comments

 Dharma Systems, Inc.

 Brookline Business Center.

 #55, Route 13

 Brookline, NH 03033

 Phone: 603-732-4001

 Fax: 603-732-4003

 Electronic Mail: support@dharma.com

 Web Page: http://www.dharma.com

Dharma/SQL, Dharma AppLink, Dharma SDK and Dharma Integrator are trademarks of Dharma Systems, Inc.

The following are third-party trademarks:

Microsoft is a registered trademark, and ODBC, Windows, Windows NT, Windows 95 and Windows 2000 are trade-
marks of Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation.

Java, Java Development Kit, Solaris, SPARC, SunOS, and SunSoft are registered trademarks of Sun Microsystems,
Inc.

All other trademarks and registered trademarks are the property of their respective holders.

Contents
 Introduction
 Purpose of This Manual . vii
 Audience. vii
 Structure . vii
 Syntax Diagram Conventions . viii
 Related Documentation . viii

 1 Introduction
1.1 Overview . 1-1
1.2 JDBC Architecture . 1-1
1.3 Types of JDBC Drivers . 1-2

1.3.1 JDBC-ODBC Bridge Drivers. 1-2
1.3.2 Native-Method Drivers . 1-3
1.3.3 Network-Protocol All-Java Drivers . 1-3
1.3.4 Native-Protocol All-Java Drivers (Dharma SDK JDBC Driver) 1-3

1.4 JDBC Compared to ODBC . 1-3
 2 Basic JDBC Driver Operations

2.1 Introduction . 2-1
2.2 Required Java Environment. 2-1
2.3 Setting Up the JDBC Driver: Web Server . 2-1

2.3.1 Copying JDBC Driver and Applet Class Files. 2-2
2.3.2 Compressing Class Files Into Java Archive Files . 2-2
2.3.3 Creating a Web Page That Invokes the Applet . 2-2

2.4 Setting Up the JDBC Driver: Application Server . 2-3
2.4.1 Setting Environment Variables . 2-3

2.5 Connecting to a Database . 2-4
2.5.1 Load the JDBC Driver Using Class.forName . 2-4
2.5.2 Connect to the JDBC Driver Using DriverManager.getConnection 2-4

2.5.2.1 Java URL Connection String . 2-4
2.5.2.2 User Authentication Detail . 2-5

2.5.3 An Example Connection . 2-5
2.5.4 Connection Pooling Support in JDBC . 2-6

2.5.4.1 javax.sql Package . 2-6
2.5.4.2 Using A DataSource Object To Make A Connection . 2-6
2.5.4.3 Connection Pooling . 2-7
2.5.4.4 Implementation in Dharma JDBC Driver. 2-7

2.6 Managing Transactions Explicitly to Improve Performance. 2-8
 3 JDBC Conformance Notes

3.1 Supported Data Types . 3-1
3.2 Return Values for DatabaseMetaData Methods . 3-2
3.3 Error Messages . 3-14

 A Glossary
A.1 Terms . A-1

Figures
v

Figure 1-1: JDBC Architecture . 1-2
Tables

Table 3-1: Mapping Between Java and JDBC Data Types . 3-1
Table 3-2: Mapping Between JDBC and Java Data Types . 3-1
Table 3-3: Return Values for DatabaseMetaData Methods . 3-3

Examples
Example 2-1: Loading the JDBC Driver and Connecting to a Database 2-6
Example 3-1: Getting Driver Information Through DatabaseMetadata Methods 3-2
vi

Introduction

PURPOSE OF THIS MANUAL
This manual gives an overview of the JDBC (Java Database Connectivity) interface
and the Dharma JDBC Driver. It describes how to set up and use the driver and details
the driver's support for the JDBC interface. The JDBC Driver provides access to the
Dharma SDK environments from applications that support JDBC.

AUDIENCE
This manual is directed towards application programmers writing database applica-
tions using Dharma SDK. It assumes knowledge of the Java™ programming lan-
guage.

STRUCTURE
This manual contains the following chapters:

Chapter 1 Introduces the Dharma SDK JDBC driver and
describes how it works.

Chapter 2 Describes basic JDBC Driver operations: required soft-
ware, setup, using the sample program, connecting to
databases, and managing transactions.

Chapter 3 Details the information returned by the JDBC driver to
the DatabaseMetadata methods and lists the supported
SQL and corresponding Java data types.

Appendix A Contains a glossary of terms you should know.
Dharma Systems Inc. vii

JDBC Driver
SYNTAX DIAGRAM CONVENTIONS

RELATED DOCUMENTATION
Refer to the following manuals for more information:

Java Information

UPPERCASE Uppercase type denotes reserved words. You must
include reserved words in statements, but they can be
upper or lower case.

lowercase Lowercase type denotes either user-supplied elements
or names of other syntax diagrams. User-supplied ele-
ments include names of tables, host-language variables,
expressions, and literals. Syntax diagrams can refer to
each other by name. If a diagram is named, the name
appears in lowercase type above and to the left of the
diagram, followed by a double-colon (for example,
privilege ::). The name of that diagram appears in low-
ercase in diagrams that refer to it.

{ } Braces denote a choice among mandatory elements.
They enclose a set of options, separated by vertical bars
(|). You must choose at least one of the options.

[] Brackets denote an optional element or a choice among
optional elements.

| Vertical bars separate a set of options.

... A horizontal ellipsis denotes that the preceding element
can optionally be repeated any number of times.

() , ; Parentheses and other punctuation marks are required
elements. Enter them as shown in syntax diagrams.

Dharma SDK SQL Reference
Manual

Describes the syntax and semantics of statements and
language elements for the Dharma SDK interface.

Dharma SDK User Guide This manual describes the Dharma Software Develop-
ment Kit (SDK).

Dharma SDK ISQL Reference
Manual

Describes the Dharma SDK interactive SQL utility,
ISQL, and other database administration utilities.

Dharma SDK ODBC Driver
Guide

Describes Dharma SDK support for the ODBC inter-
face and how to configure the Dharma SDK ODBC
Driver.

Dharma SDK .NET Data Pro-
vider Guide

Describes how to set up and use the Dharma SDK
.NET Data Provider to access Dharma SDK databases
from .NET applications.
viii Dharma Systems Inc.

Introduction
James Gosling & Henry McGilton

"The Java™ Language Environment: A White Paper"

http://java.sun.com/docs/white/langenv/

Mary Campione and Kathy Walrath

The Java™ Tutorial

http://java.sun.com/docs/books/tutorial/index.html

Java™ Platform 1.3 Core API

http://www.javasoft.com:80/products/jdk/1.2/docs/api/packages.html

Gary Cornell and Cay Horstmann

Core Java 1.1 Volume 1: The Fundamentals

Prentice Hall, Upper Saddle River, NJ, 1997

JDBC Information

JavaSoft's JDBC home page

http://java.sun.com/products/jdbc/

George Reese

Database Programming with JDBC and Java

O'Reilly and Associates, Sebastopol, CA, 1997

ODBC Information

Microsoft ODBC Programmer’s Reference, Version 3.0 — Describes the ODBC inter-
face, its features, and how applications use it.
Dharma Systems Inc. ix

JDBC Driver
x Dharma Systems Inc.

Chapter 1

Introduction

1.1 OVERVIEW
The Dharma JDBC Driver provides access to Dharma SDK environments from appli-
cations that support the JDBC 3.0 API.

JDBC allows applications to connect to any database using the same set of Java inter-
faces. Those interfaces allow programs to embed standard Structured Query Lan-
guage (SQL) statements that update and retrieve data in the database.

Because the Java interfaces and SQL syntax are independent of any particular data-
base implementation, JDBC makes it feasible for applications to connect to different
database environments without any modification.

1.2 JDBC ARCHITECTURE
JDBC insulates Java applications from variations in database access implementations
through the JDBC API, a set of class libraries distributed as a standard part of core
Java. Instead of using calls to vendor-specific interfaces, JDBC applications use the
JDBC API.

The JDBC API is distributed as the package java.sql and is included with the JavaSoft
JDK (Version 1.4 or later), so any environment that supports a recent Java compiler
can be used to develop JDBC applications.

Calls to the JDBC API are managed by the JDBC driver manager. The JDBC driver
manager can support multiple drivers connecting to different databases. When an
application tries to connect to a particular database, the driver manager loads the
appropriate JDBC driver and routes subsequent calls through the driver.

A JDBC driver is a database-specific software that receives calls from the JDBC
driver manager, translates them into a form that the database can process, and returns
data to the application.

The following figure shows the different components of the JDBC architecture.
Dharma Systems Inc. 1-1

JDBC Driver
Figure 1-1: JDBC Architecture

1.3 TYPES OF JDBC DRIVERS
JDBC drivers can either be entirely written in Java so that they can be downloaded as
part of an applet, or they can be implemented using native methods to bridge to exist-
ing database access libraries.

JavaSoft defines four different types of JDBC drivers, as noted in the previous figure
and outlined in the following sections.

1.3.1 JDBC-ODBC Bridge Drivers
Type 1 drivers translate calls to JDBC methods into calls to Microsoft Open Database
Connectivity (ODBC) functions. Bridge drivers allow JDBC applications immediate
access to database connectivity provided by the existing array of ODBC drivers.

Both the JavaSoft JDK and Microsoft Java SDK include JDBC-ODBC bridge drivers.

ODBC architecture requires that the ODBC driver manager and (typically) the ODBC
drivers themselves be loaded on each client system. The requirement for software res-
ident on client systems means that JDBC-ODBC bridge drivers will not work with
Java applets run from an Internet browser. Browsers do not allow applets to run
another program on the client to which they are downloaded. (In general, JDBC-
ODBC bridge drivers will not work in environments that restrict Java applications
from reading and writing files or running other programs.)

JDBC-ODBC bridge drivers are still useful in corporate networks, or for use by appli-
cation server code written in Java in a 3-tier architecture. In such an environment, the
application server has intermediary software, such as Blue Lobster's Aptivity, that

JDBC Driver

Data base
1-2 Dharma Systems Inc.

Introduction
receives requests from browsers and other Internet applications. The intermediary
software in turn calls the JDBC driver manager when it receives a database request.

1.3.2 Native-Method Drivers
Type 2 drivers contain Java code that calls "native" C or C++ methods already imple-
mented by database vendors.

Like an ODBC driver, a native-method driver must be installed on each client or
server that uses it, and thus has the same limitations as the JDBC-ODBC bridge driv-
ers. A typical use of native-method drivers is on application servers.

1.3.3 Network-Protocol All-Java Drivers
Type 3 drivers are completely written in Java. They translate JDBC calls into a data-
base-independent network protocol which is in turn translated to a DBMS protocol by
middleware on a network server.

This type of driver can thus connect many Java clients to many different databases.
The specific protocol used depends on the vendor.

Type 3 drivers are the most flexible since they do not require any driver software resi-
dent on client systems and can allow a single driver to provide access to multiple data-
bases.

1.3.4 Native-Protocol All-Java Drivers (Dharma SDK JDBC Driver)
Type 4 drivers are also written completely in Java, but do not rely on middleware.
They convert JDBC calls directly into the network protocol used by a particular data-
base. This approach allows a direct call from the client system to the database server.
Also, since there is no client-resident software, it also is practical for Internet applica-
tions.

Type 4 drivers provide the best performance.

The Dharma JDBC Driver is a Type 4 driver. Sybase is another vendor that offers
Type 4 drivers for JDBC access to many of its database products.

1.4 JDBC COMPARED TO ODBC
Generally speaking, JDBC is to Java what Microsoft's Open Database Connectivity
(ODBC) interface is to the C language. Both JDBC and ODBC:

• Provide a vendor-independent API that allows the same application to connect to
different vendors' databases and retrieve and update data using standard SQL
statements.

• Adopt the architecture of imposing a driver manager between applications and
vendor-supplied drivers that translate between the standard API and a vendor's
proprietary implementation.

• Are based on the X/Open SQL call-level interface specification.

JDBC proponents cite these advantages of JDBC over ODBC:
Dharma Systems Inc. 1-3

JDBC Driver
• JDBC applications enjoy the platform-independence of Java, which lends itself to
Internet applications. ODBC applications must, at a minimum, be recompiled to
run on a different operating-system/hardware combination.

• JDBC does not require software on each client system, which also recommends it
for Internet applications.

• JDBC is much simpler and easier to learn than ODBC.

• JDBC is not primarily targeted for PC application development, which makes for
faster implementation outside the Windows environment.
1-4 Dharma Systems Inc.

Chapter 2

Basic JDBC Driver Operations

2.1 INTRODUCTION
This chapter describes how to set up and get started using the Dharma SDK JDBC
Driver.

2.2 REQUIRED JAVA ENVIRONMENT
You must have a supported Java development or runtime environment on each system
that uses the JDBC Driver. The Dharma SDK JDBC Driver requires the following
development (or compatible runtime) environments:

• On UNIX: JavaSoft JDK™ Version 1.4 .1_02

• On Windows NT or Windows 2000: JavaSoft JDK™ Version 1.4 or higher

You must have one of these environments or their associated Java runtime environ-
ments to use the JDBC Driver. For details on obtaining this software, see the URL
http://java.sun.com/products/index.html.

2.3 SETTING UP THE JDBC DRIVER: WEB SERVER
In a Web server environment, the JDBC driver and Java applets that use it reside on a
host system. No additional driver software is required on the client machine. Client
applications must support a Java virtual machine compatible with JavaSoft’s JDK Ver-
sion 1.4 .1_02 (Internet browsers such as Netscape or Internet Explorer meet this
requirement.)

Client applications invoke a JDBC applet through a Web page on the server. The
browser downloads both the applet and the JDBC Driver from the server (usually in
compressed format) and runs the applet. The Java applet opens a database connection
(see section “2.5 Connecting to a Database” on page 2-4) and accesses the database
using the JDBC API.

A general JDBC security restriction is that applets can only open a database connec-
tion from the server from which they are downloaded. That means the host system
must be running both the HTTP Web server and the Dharma server dhdaemon pro-
cess. (See the Dharma SDK UserGuide and Release Notes for details of managing the
dhdaemon process).

To set up the JDBC Driver for an applet on a Web server, complete these steps:

• Copy compiled class files for the the applet and Java Archive(.jar) file of the
JDBC driver to a directory accessible to the Web page that will invoke the applet.

• Compress all the applet class files into a single .jar file.
Dharma Systems Inc. 2-1

JDBC Driver
• Create the Web page that will invoke the applet.

2.3.1 Copying JDBC Driver and Applet Class Files
On both Windows NT/2000 and UNIX, the jar file for the JDBC Driver is installed in
the directory mentioned during installation. Copy the jar file from that directory to a
directory accessible to the Web page. Do the same for the applet’s class file.

For example:

systpe@isis% cd $webroot

/vol6/webroot

systpe@isis% mkdir test

systpe@isis% cd test

/vol6/webroot/test

systpe@isis% cp -i $TPEROOT/DharmaDriver.jar .

systpe@isis% cp -i /applet_test/DhJDBCApplet.class .

2.3.2 Compressing Class Files Into Java Archive Files
This step is optional but recommended. JAR files greatly reduce the number of con-
nections a browser must make to the Web server to download required classes. For
example, compress class files into JAR file DhJDBCTest.jar file as following:

systpe@isis% pwd

/vol6/webroot/test

systpe@isis% jar -cvf DhJDBCTest.jar *.class

adding: ClRqTypes.class (in=1287) (out=736) (deflated 42%)

adding: CntlIface.class (in=696) (out=375) (deflated 46%)

adding: CntlIfaceCS.class (in=2143) (out=1116) (deflated 47%)

adding: CntlIfaceSS.class (in=2133) (out=1056) (deflated 50%)

.

.

.

systpe@isis% ls -al *.jar

-rw-r--r-- 1 systpe staff 132534 Sep 2 16:58 DhJD-
BCTest.jar

2.3.3 Creating a Web Page That Invokes the Applet
At a minimum, the page must include the APPLET tag that invokes the applet.

For example, the following page includes little else but the APPLET tag. The exam-
ple’s APPLET tag specifies the DhJDBCApplet.class and DhJDBCTest.jar files from
the preceding sections, as well as class-name and connection parameters to pass to the
applet.

systpe@isis% pwd

/vol6/webroot/test
2-2 Dharma Systems Inc.

Basic JDBC Driver Operations
systpe@isis% more jtest.htm

<html>

 <head>

 <title>Test</title>

 </head>

 <body>

 <p>

 Here, in all its glory, is the DhJDBCApplet test applet!

 <center>

 <applet code="DhJDBCApplet.class"

 archive="DhJDBCTest.jar" width=500 height=400>

 <param name=Driver value="dharma.jdbc.DharmaDriver">

 <param name=URL value="jdbc:dharma:T:isis:jdbcdb">

 <param name=User value="systpe">

 <param name=Password value="dummy">

 </applet>

 </center>

 </body>

</html>

2.4 SETTING UP THE JDBC DRIVER: APPLICATION SERVER
In an application server environment, the system on which the JDBC application runs
also has the JDBC driver installed. This configuration provides good performance
when users are on the same system or can execute the JDBC application across a net-
work.

To set up the JDBC Driver, you must have access to a system (UNIX or Windows)
where the Dharma SDK libraries and executable files have been installed, as
described in the Dharma SDK Guide and Release Notes.

2.4.1 Setting Environment Variables
Whether the JDBC Driver jar file resides locally or on network-served disks, you
must set the CLASSPATH environment variable to point to the class files.

On both Windows and UNIX, the CLASSPATH environment variable must point to
the directory containing the DharmaDriver.jar file.

Windows
On Windows , you must set the CLASSPATH environment variable:

 C:\>set classpath

JREHOME=C:\JRE1.4

 CLASSPATH=%TPEROOT%\DharmaDriver.jar;%JREHOME%\lib\rt.jar

(For the environment variables to persist across different processes, set them using the
Window Control Panel's System utility, and set them as system variables.)

UNIX
Make sure the CLASSPATH variable includes the directory containing the .class files
for the Dharma JDBC Driver.
Dharma Systems Inc. 2-3

JDBC Driver
For example:

% setenv CLASSPATH ".:$TPEROOT/DharmaDriver.jar:${JREHOME}/lib/
rt.jar"

2.5 CONNECTING TO A DATABASE
JDBC applications must perform two steps to connect to a database:

1. Load the JDBC driver

2. Connect to the driver

2.5.1 Load the JDBC Driver Using Class.forName
The Class.forName method takes as its argument the fully-qualified class name for the
JDBC Driver. If it finds the class, the method loads and links the class, and returns the
Class object representing the class.

The fully-qualified class name for the Dharma SDK JDBC Driver is
dharma.jdbc.DharmaDriver. To load the JDBC Driver, use it as the argument to the
Class.forName method:

 // Load the driver

 Class.forName ("dharma.jdbc.DharmaDriver");

2.5.2 Connect to the JDBC Driver Using DriverManager.getConnection
To connect to a Dharma SDK database through the JDBC Driver, an application spec-
ifies:

• A database connection string in the form of a JDBC URL

• User authentication detail (user name and password)

 Applications specify this information as arguments to the DriverManager.getConnec-
tion method.

2.5.2.1 Java URL Connection String
DriverManager.getConnection requires at least one argument, a character string spec-
ifying a database connection URL. For the Dharma SDK JDBC Driver, the URL
takes the following form:

jdbc:dharma:T:host_name:db_name:port:optional connection information

The URL string has the following components:

jdbc:dharma:T An identifying protocol and subprotocol string for the
Dharma JDBC Driver.

:host_name Name of the server system where the database resides.

:db_name Name of the database.
2-4 Dharma Systems Inc.

Basic JDBC Driver Operations
For example, the default URL in the sample application is jdbc:dharma:T:isis:testdb.
When passed to DriverManager.GetConnection, this URL specifies that the Dharma
JDBC Driver be used to connect to the database testdb on the server named isis.

2.5.2.2 User Authentication Detail
DriverManager.GetConnection accepts three variants of user authentication detail:

• User name and password passed as two character string arguments:

Connection con = DriverManager.getConnection (url, "fred"
"fredspasswd");

• User name and password passed as a single Properties object:

Connection con = DriverManager.getConnection (url, prop);

Note that the JDBC Driver expects the keys of the Properties object to be named user
and password when it processes the object. Application code must use those names
when it populates the Properties object:

prop.put("user", userid);

prop.put("password", passwd);

• User name and password omitted. The JDBC Driver connects to the database
with a blank username and null password:

Connection con = DriverManager.getConnection (url);

2.5.3 An Example Connection
The following example shows a code excerpt that illustrates loading the driver and
connecting to the default server and database. The following example uses the form
of DriverManager.GetConnection that takes authentication information as a single
Properties object.

Example 2-1: Loading the JDBC Driver and Connecting to a Database

 String url = "jdbc:dharma:T:isis:testdb";

 String userid = "fred";

 String passwd = "fredspasswd";

:port The port number associated with the JDBC server on
the host system. In most cases this component is
optional. Java applets that are hosted on servers that
do not use the default port number of 1990 must use
this component to specify the correct port number. See
the Installation Guide and Release Notes for details on
setting the port number for the JDBC server.

:optional connec-
tion information

The optional connection information component of the
URL is optional. If it is specified, the port information
must also be specified in order for the string to be cor-
rectly parsed. The maximum length of this component is
200 characters. It may contain blank spaces but not the
colon(:) character. The contents of this string are imple-
menter dependent.
Dharma Systems Inc. 2-5

JDBC Driver
 // Load the driver

 Class.forName ("dharma.jdbc.DharmaDriver");

 // Attempt to connect to a driver. Each one

 // of the registered drivers will be loaded until

 // one is found that can process this URL.

 java.util.Properties prop = new java.util.Properties();

 prop.put("user", userid);

 prop.put("password", passwd);

 Connection con = DriverManager.getConnection (url, prop);

2.5.4 Connection Pooling Support in JDBC
The IBM’s Websphere 4.0 Application server uses the JDBC APIs DataSource,
PooledConnection and ConnectionPoolDataSource to connect to any data source.
These APIs are part of the javax.sql package. It is mandatory to support them when
working with IBM’s Websphere 4.0 middleware.

2.5.4.1 javax.sql Package
The javax.sql package provides the APIs for server side data source access and pro-
cessing. This is included in the Java 2 SDK version 1.4, Standard Edition.

The javax.sql package provides the following:

• The DataSource interface as an alternative to the DriverManager for establishing a
connection with a data source

• Connection pooling

2.5.4.2 Using A DataSource Object To Make A Connection
The javax.sql package provides the preferred way to make a connection with a data
source. The DriverManager class, the original mechanism, is still valid, and code
using it will continue to run. However, the newer DataSource mechanism is preferred
because it offers many advantages over the DriverManager mechanism.

The following are the main advantages of using a DataSource object to make a con-
nection:

• Applications do not need to hard code a driver class.

• Changes can be made to a data source's properties, which means that it is not nec-
essary to make changes in application code when something about the data source
or driver changes.

• Connection pooling and distributed transactions are available through a Data-
Source object that is implemented to work with the middle-tier infrastructure.
Connections made through the DriverManager do not have connection pooling or
distributed transaction capabilities.

A particular DataSource object represents a particular physical data source, and each
connection the DataSource object creates is a connection to that physical data source.
2-6 Dharma Systems Inc.

Basic JDBC Driver Operations
A DataSource object can be implemented to work with the middle tier infrastructure
so that the connections it produces will be pooled for reuse. An application that uses
such a DataSource implementation will automatically get a connection that partici-
pates in connection pooling. A DataSource object can also be implemented to work
with the middle tier infrastructure so that the connections it produces can be used for
distributed transactions without any special coding.

2.5.4.3 Connection Pooling
Connections made via a DataSource object that is implemented to work with a middle
tier connection pool manager will participate in connection pooling. This can improve
performance dramatically because creating new connections is very expensive. Con-
nection pooling allows a connection to be used and reused, thus reducing the number
of new connections that need to be created.

Connection pooling is totally transparent. It is done automatically in the middle tier of
a J2EE Environment, and hence from an application's viewpoint, no change in code is
required. An application simply uses the DataSource.getConnection method to get the
pooled connection and uses it the same way it uses any Connection object.

2.5.4.4 Implementation in Dharma JDBC Driver
In order to support working with IBM’s Websphere 4.0 Application server, the follow-
ing interfaces from the package javax.sql have been implemented.

• javax.sql.DataSource

This is a factory for connections to the physical data source that this DataSource
object represents. An object that implements the DataSource interface will typically
be registered with a naming service based on the Java Naming and Directory (JNDI)
API.

• javax.sql.PooledConnection interfaces

An object that provides hooks for connection pool management. A PooledConnection
object represents a physical connection to a data source. The connection can be recy-
cled rather than being closed when an application is finished with it, thus reducing the
number of connections that need to be made.

• javax.sql.ConnectionPoolDataSource

This is a factory for PooledConnection objects. An object that implements this inter-
face will typically be registered with a naming service that is based on the Java Nam-
ing and Directory Interface (JNDI).

A new directory, TPEROOT/src/jdbcx, has been introduced. This directory has the
following source files:

• DharmaDataSource.java

• DharmaConnectionPoolDataSource.java

• DharmaPooledConnection.java

• DharmaObjectFactory.java
Dharma Systems Inc. 2-7

JDBC Driver
2.6 MANAGING TRANSACTIONS EXPLICITLY TO IMPROVE PERFOR-
MANCE

By default, new connections in JDBC applications are in autocommit mode.

In autocommit mode every SQL statement executes in its own transaction:

• After successful completion, the JDBC Driver automatically commits the transac-
tion.

• If the statement execution fails, the JDBC Driver automatically rolls back the
transaction.

Note: In autocommit mode, the JDBC Driver does not issue a commit after
SELECT and CALL statements. The driver assumes these statements
generate result sets and relies on the application to explicitly commit or
roll back the transaction after it processes any result set and closes the
statement.

You can change the transaction mode to manual commit by calling the Connec-
tion.setAutoCommit method. In manual commit mode, applications must commit a
transaction by using the Connection.commit method. Similarly, applications must
explicitly roll back a transaction by invoking the Connection.rollback method.

You will improve the performance of your programs by setting autocommit to false
after creating a Connection object with the Connection.setAutoCommit method:

 Connection con = DriverManager.getConnection (url, prop);

.

.

.

 con.setAutoCommit(false);
2-8 Dharma Systems Inc.

Chapter 3

JDBC Conformance Notes

The Dharma SDK JDBC Driver is JDBC 3.0 compliant and provides access to
Dharma SDK environments from applications and application servers that support
JDBC 3.0.

3.1 SUPPORTED DATA TYPES
The Dharma JDBC Driver supports standard JDBC mapping of JDBC types corre-
sponding Java types.

In the JDBC methods CallableStatement.getXXX and PreparedStatement.setXXX
methods, XXX is a Java type:

• For setXXX methods, the driver converts the Java type to the JDBC type shown in
the following table before sending it to the database.

• For getXXX methods, the driver converts the JDBC type returned by the database
to the Java type shown in Table 3–2 before returning it to the getXXX method.

Table 3-1: Mapping Between Java and JDBC Data Types

Java Type JDBC type Java Type JDBC type

String VARCHAR or
LONGVARCHAR

float REAL

java.math.BigDecimal NUMERIC double DOUBLE

boolean BIT byte[] VARBINARY or LONG-
VARBINARY

byte TINYINT java.sql.Date DATE

short SMALLINT java.sql.Time TIME

int INTEGER java.sql.Timestamp TIMESTAMP

long BIGINT

Table 3-2: Mapping Between JDBC and Java Data Types

JDBC type Java type JDBC type Java type

CHAR String REAL float

VARCHAR String FLOAT double
Dharma Systems Inc. 3-1

JDBC Driver
3.2 RETURN VALUES FOR DATABASEMETADATA METHODS
Applications call methods of the DatabaseMetaData class to retrieve details about the
JDBC support provided by a specific driver.

The following table lists each method of the DatabaseMetadata class and shows what
the Dharma JDBC Driver returns when an applications calls the method. For details
on the format and usage of each method, see the Java Platform Core API documenta-
tion.

The following example shows an excerpt from the sample program that illustrates
calling methods of DatabaseMetadata.

Example 3-1: Getting Driver Information Through DatabaseMetadata Methods

 Connection con = DriverManager.getConnection (url, prop);

.

.

.

 // Get the DatabaseMetaData object and display

 // some information about the connection

 DatabaseMetaData dma = con.getMetaData ();

 o.println("\nConnected to " + dma.getURL());

 o.println("Driver " +

 dma.getDriverName());

 o.println("Version " +

 dma.getDriverVersion());

LONGVAR-
CHAR

String DOUBLE double

NUMERIC java.math.BigDecimal BINARY byte[]

DECIMAL java.math.BigDecimal VARBINARY byte[]

BIT boolean LONGVARBINARY byte[]

TINYINT byte DATE java.sql.Date

SMALLINT short TIME java.sql.Time

INTEGER int TIMESTAMP java.sql.Timestamp

BIGINT long

Table 3-2: Mapping Between JDBC and Java Data Types

JDBC type Java type JDBC type Java type
3-2 Dharma Systems Inc.

JDBC Conformance Notes
Many of the methods return lists of information as an object of type ResultSet. Use
the normal ResultSet methods such as getString and getInt to retrieve the data from the
result sets.

Table 3-3: Return Values for DatabaseMetaData Methods

Method Description Returns

allProceduresAreCallable() Can all the procedures returned by
getProcedures be called by the cur-
rent user?

True

allTablesAreSelectable() Can all the tables returned by get-
Table be SELECTed by the current
user?

False

dataDefinitionCausesTransac-
tionCommit()

Does a data definition statement
within a transaction force the trans-
action to commit?

False

dataDefinitionIgnoredInTransac-
tions ()

Is a data definition statement within
a transaction ignored?

False

doesMaxRowSizeIncludeBlobs() Did getMaxRowSize() include
LONGVARCHAR and LONGVAR-
BINARY blobs?

False

getBestRowIdentifier(String,
String, String, int, boolean)

Get a description of a table's opti-
mal set of columns that uniquely
identifies a row.

(result set)

getCatalogs() Get the catalog names available in
this database.

"Driver not capable"

getCatalogSeparator() What's the separator between cata-
log and table name?

"" (blank)

getCatalogTerm() What's the database vendor's pre-
ferred term for "catalog"?

"" (blank)

getColumnPrivileges(String,
String, String, String)

Get a description of the access
rights for a table's columns.

(result set)

getColumns(String, String,
String, String)

Get a description of table columns
available in a catalog.

(result set)

getCrossReference(String,
String, String, String, String,
String)

Get a description of the foreign key
columns in the foreign key table
that reference the primary key col-
umns of the primary key table
(describe how one table imports
another's key.) This should nor-
mally return a single foreign key/
primary key pair (most tables only
import a foreign key from a table
once.) They are ordered by
FKTABLE_CAT,
FKTABLE_SCHEM,
FKTABLE_NAME, and KEY_SEQ.

(result set)
Dharma Systems Inc. 3-3

JDBC Driver
getDatabaseProductName() What's the name of this database
product?

"Dharma JDBC SDK"

getDatabaseProductVersion() What's the version of this database
product?

"09.00.0000"

getDefaultTransactionIsolation() What's the database's default
transaction isolation level? The val-
ues are defined in java.sql.Connec-
tion.

TRANSACTION_SERIALIZAB
LE

getDriverMajorVersion() What's this JDBC driver's major
version number?

9

getDriverMinorVersion() What's this JDBC driver's minor
version number?

0

getDriverName() What's the name of this JDBC
driver?

"dharma.jdbc.DharmaDriver"

getDriverVersion() What's the version of this JDBC
driver?

"09.00.0000"

getExportedKeys(String, String,
String)

Get a description of the foreign key
columns that reference a table's
primary key columns (the foreign
keys exported by a table).

(result set)

getExtraNameCharacters() Get all the "extra" characters that
can be used in unquoted identifier
names (those beyond a-z, A-Z, 0-9
and _).

null

getIdentifierQuoteString () What's the string used to quote
SQL identifiers? This returns a
space " " if identifier quoting isn't
supported.

"""

getImportedKeys(String, String,
String)

Get a description of the primary key
columns that are referenced by a
table's foreign key columns (the pri-
mary keys imported by a table).

(result set)

getIndexInfo(String, String,
String, boolean, boolean)

Get a description of a table's indi-
ces and statistics.

(result set)

getMaxBinaryLiteralLength() How many hex characters can you
have in an inline binary literal?

2000

getMaxCatalogNameLength() What's the maximum length of a
catalog name?

32

getMaxCharLiteralLength() What's the max length for a charac-
ter literal?

2000

getMaxColumnNameLength() What's the limit on column name
length?

32

Table 3-3: Return Values for DatabaseMetaData Methods

Method Description Returns
3-4 Dharma Systems Inc.

JDBC Conformance Notes
getMaxColumnsInGroupBy() What's the maximum number of
columns in a "GROUP BY" clause?

0 (no limit)

getMaxColumnsInIndex() What's the maximum number of
columns allowed in an index?

100

getMaxColumnsInOrderBy() What's the maximum number of
columns in an "ORDER BY"
clause?

0 (no limit)

getMaxColumnsInSelect() What's the maximum number of
columns in a "SELECT" list?

0 (no limit)

getMaxColumnsInTable() What's the maximum number of
columns in a table?

500

getMaxConnections() How many active connections can
we have at a time to this database?

10

getMaxCursorNameLength() What's the maximum cursor name
length?

32

getMaxIndexLength() What's the maximum length of an
index (in bytes)?

0 (no limit)

getMaxProcedureNameLength() What's the maximum length of a
procedure name?

32

getMaxRowSize() What's the maximum length of a
single row?

0 (no limit)

getMaxSchemaNameLength() What's the maximum length
allowed for a schema name?

32

getMaxStatementLength() What's the maximum length of a
SQL statement?

35000

getMaxStatements() How many active statements can
we have open at one time to this
database?

0 (no limit)

getMaxTableNameLength() What's the maximum length of a
table name?

32

getMaxTablesInSelect() What's the maximum number of
tables in a SELECT?

250

getMaxUserNameLength() What's the maximum length of a
user name?

32

Table 3-3: Return Values for DatabaseMetaData Methods

Method Description Returns
Dharma Systems Inc. 3-5

JDBC Driver
getNumericFunctions() Get a comma separated list of math
functions.

ABS,
ACOS,
ASIN,
ATAN,
ATAN2,
CEILING,
COS,
COT,
DEGREES,
EXP,
FLOOR,
LOG,
LOG10,
MOD,
PI,
POWER,
RADIANS,
RAND,
ROUND,
SIGN,
SIN,
SQRT,
TAN,
TRUNCATE

getPrimaryKeys(String, String,
String)

Get a description of a table's pri-
mary key columns.

(result set)

getProcedureColumns(String,
String, String, String)

Get a description of a catalog's
stored procedure parameters and
result columns.

(result set)

getProcedures(String, String,
String)

Get a description of stored proce-
dures available in a catalog.

(result set)

getProcedureTerm() What's the database vendor's pre-
ferred term for "procedure"?

"procedure"

getSchemas() Get the schema names available in
this database.

(result set)

getSchemaTerm() What's the database vendor's pre-
ferred term for "schema"?

"Owner"

getSearchStringEscape() This is the string that can be used
to escape '_' or '%' in the string pat-
tern style catalog search parame-
ters.

"\"

getSQLKeywords() Get a comma separated list of all a
database's SQL keywords that are
NOT also SQL92 keywords.

null

Table 3-3: Return Values for DatabaseMetaData Methods

Method Description Returns
3-6 Dharma Systems Inc.

JDBC Conformance Notes
getStringFunctions() Get a comma separated list of
string functions.

ASCII,
LTRIM,
CHAR,
DIFFERENCE,
INSERT,
LCASE,
LEFT,
REPEAT,
REPLACE,
SOUNDEX,
SPACE,
SUBSTRING,
UCASE,
RTRIM,
CONCAT,
LENGTH,
LOCATE

getSystemFunctions() Get a comma separated list of sys-
tem functions.

SQL_FN_SYS_USERNAME,
SQL_FN_SYS_IFNULL,
SQL_FN_SYS_DBNAME

getTablePrivileges(String, String,
String)

Get a description of the access
rights for each table available in a
catalog.

(result set)

getTables(String, String, String,
String [])

Get a description of tables avail-
able in a catalog.

(result set)

getTableTypes() Get the table types available in this
database.

SYNONYM, SYSTEM TABLE,
TABLE, VIEW

getTimeDateFunctions() Get a comma separated list of time
and date functions.

CURDATE,
CURTIME,
DAYOFMONTH,
DAYOFWEEK,
DAYOFYEAR,
MONTHNOW,
QUARTER,
WEEK,
YEAR,
HOUR,
MINUTE,
SECOND,

getTypeInfo() Get a description of all the standard
SQL types supported by this data-
base.

(result set)

getURL() What's the url for this database? (the URL)

getUserName() What's our user name as known to
the database?

(the userid)

Table 3-3: Return Values for DatabaseMetaData Methods

Method Description Returns
Dharma Systems Inc. 3-7

JDBC Driver
getVersionColumns(String,
String, String)

Get a description of a table's col-
umns that are automatically
updated when any value in a row is
updated.

(result set)

isCatalogAtStart() Does a catalog appear at the start
of a qualified table name? (Other-
wise it appears at the end)

True

isReadOnly() Is the database in read-only mode? False

nullPlusNonNullIsNull() Are concatenations between NULL
and non-NULL values NULL? A
JDBC-Compliant driver always
returns true.

True

nullsAreSortedAtEnd() Are NULL values sorted at the end
regardless of sort order?

False

nullsAreSortedAtStart() Are NULL values sorted at the start
regardless of sort order?

False

nullsAreSortedHigh() Are NULL values sorted high? False

nullsAreSortedLow() Are NULL values sorted low? True

storesLowerCaseIdentifiers() Does the database treat mixed
case unquoted SQL identifiers as
case insensitive and store them in
lower case?

True or False

Depends on the identifier case
specified during the creation of
database.

storesLowerCaseQuotedIdentifi-
ers()

Does the database treat mixed
case quoted SQL identifiers as
case insensitive and store them in
lower case?

True or False

Depends on the quoted identi-
fier case specified during the
creation of database.

storesMixedCaseIdentifiers() Does the database treat mixed
case unquoted SQL identifiers as
case insensitive and store them in
mixed case?

False

storesMixedCaseQuotedIdentifi-
ers()

Does the database treat mixed
case quoted SQL identifiers as
case insensitive and store them in
mixed case?

False

storesUpperCaseIdentifiers() Does the database treat mixed
case unquoted SQL identifiers as
case insensitive and store them in
upper case?

True or False

Depends on the identifier case
specified during the creation of
database.

storesUpperCaseQuotedIdentifi-
ers()

Does the database treat mixed
case quoted SQL identifiers as
case insensitive and store them in
upper case?

False

Table 3-3: Return Values for DatabaseMetaData Methods

Method Description Returns
3-8 Dharma Systems Inc.

JDBC Conformance Notes
supportsAlterTableWithAddCol-
umn()

Is "ALTER TABLE" with add col-
umn supported?

True

supportsAlterTableWithDropCol-
umn()

Is "ALTER TABLE" with drop col-
umn supported?

True

supportsANSI92EntryLevelSQL() Is the ANSI92 entry level SQL
grammar supported? All JDBC-
Compliant drivers must return true.

True

supportsANSI92FullSQL() Is the ANSI92 full SQL grammar
supported?

False

supportsANSI92IntermediateSQ
L()

Is the ANSI92 intermediate SQL
grammar supported?

False

supportsCatalogsInDataManipu-
lation()

Can a catalog name be used in a
data manipulation statement?

False

supportsCatalogsInIndexDefini-
tions()

Can a catalog name be used in an
index definition statement?

False

supportsCatalogsInPrivilegeDefi-
nitions()

Can a catalog name be used in a
privilege definition statement?

False

supportsCatalogsInProcedure-
Calls()

Can a catalog name be used in a
procedure call statement?

False

supportsCatalogsInTableDefini-
tions()

Can a catalog name be used in a
table definition statement?

False

supportsColumnAliasing() Is column aliasing supported? If so,
the SQL AS clause can be used to
provide names for computed col-
umns or to provide alias names for
columns as required.

True

supportsConvert() Is the CONVERT function between
SQL types supported?

True

supportsConvert(int, int) Is CONVERT between the given
SQL types supported?

True or False

Depends on the types being
converted.

supportsCoreSQLGrammar() Is the ODBC Core SQL grammar
supported?

True

supportsCorrelatedSubqueries() Are correlated subqueries sup-
ported? A JDBC-Compliant driver
always returns true.

True

supportsDataDefinitionAndData-
ManipulationTransactions ()

Are both data definition and data
manipulation statements within a
transaction supported?

True

supportsDataManipulationTrans-
actionsOnly()

Are only data manipulation state-
ments within a transaction sup-
ported?

False

Table 3-3: Return Values for DatabaseMetaData Methods

Method Description Returns
Dharma Systems Inc. 3-9

JDBC Driver
supportsDifferentTableCorrela-
tionNames()

If table correlation names are sup-
ported, are they restricted to be dif-
ferent from the names of the
tables?

False

supportsExpressionsInOrderBy() Are expressions in "ORDER BY"
lists supported?

True

supportsExtendedSQLGram-
mar()

Is the ODBC Extended SQL gram-
mar supported?

True

supportsFullOuterJoins() Are full nested outer joins sup-
ported?

False

supportsGroupBy() Is some form of "GROUP BY"
clause supported?

True

supportsGroupByBeyondSelect() Can a "GROUP BY" clause add
columns not in the SELECT pro-
vided it specifies all the columns in
the SELECT?

True

supportsGroupByUnrelated() Can a "GROUP BY" clause use
columns not in the SELECT?

False

supportsIntegrityEnhancement-
Facility()

Is the SQL Integrity Enhancement
Facility supported?

True

supportsLikeEscapeClause() Is the escape character in "LIKE"
clauses supported? A JDBC-Com-
pliant driver always returns true.

True

supportsLimitedOuterJoins() Is there limited support for outer
joins? (This will be true if support-
FullOuterJoins is true.)

True

supportsMinimumSQLGram-
mar()

Is the ODBC Minimum SQL gram-
mar supported? All JDBC-Compli-
ant drivers must return true.

True

supportsMixedCaseIdentifiers() Does the database treat mixed
case unquoted SQL identifiers as
case sensitive and as a result store
them in mixed case? A JDBC-Com-
pliant driver will always return false.

False

supportsMixedCaseQuotedIden-
tifiers()

Does the database treat mixed
case quoted SQL identifiers as
case sensitive and as a result store
them in mixed case? A JDBC-Com-
pliant driver will always return true.

True

supportsMultipleResultSets() Are multiple ResultSets from a sin-
gle execute supported?

False

supportsMultipleTransactions () Can we have multiple transactions
open at once (on different connec-
tions)?

True

Table 3-3: Return Values for DatabaseMetaData Methods

Method Description Returns
3-10 Dharma Systems Inc.

JDBC Conformance Notes
supportsNonNullableColumns() Can columns be defined as non-
nullable? A JDBC-Compliant driver
always returns true.

True

supportsOpenCursorsAcross-
Commit()

Can cursors remain open across
commits?

False

supportsOpenCursorsAcross-
Rollback()

Can cursors remain open across
rollbacks?

False

supportsOpenStatement-
sAcrossCommit()

Can statements remain open
across commits?

True

supportsOpenStatement-
sAcrossRollback()

Can statements remain open
across rollbacks?

True

supportsOrderByUnrelated() Can an "ORDER BY" clause use
columns not in the SELECT?

True

supportsOuterJoins() Is some form of outer join sup-
ported?

True

supportsPositionedDelete() Is positioned DELETE supported? True

supportsPositionedUpdate() Is positioned UPDATE supported? True

supportsSchemasInDataManipu-
lation()

Can a schema name be used in a
data manipulation statement?

True

supportsSchemasInIndexDefini-
tions()

Can a schema name be used in an
index definition statement?

True

supportsSchemasInPrivilegeDef-
initions()

Can a schema name be used in a
privilege definition statement?

True

supportsSchemasInProcedure-
Calls()

Can a schema name be used in a
procedure call statement?

True

supportsSchemasInTableDefini-
tions()

Can a schema name be used in a
table definition statement?

True

supportsSelectForUpdate() Is SELECT for UPDATE sup-
ported?

True

supportsStoredProcedures() Are stored procedure calls using
the stored procedure escape syn-
tax supported?

True

supportsSubqueriesInCompari-
sons()

Are subqueries in comparison
expressions supported? A JDBC-
Compliant driver always returns
true.

True

supportsSubqueriesInExists() Are subqueries in 'exists' expres-
sions supported? A JDBC-Compli-
ant driver always returns true.

True

supportsSubqueriesInIns() Are subqueries in 'in' statements
supported? A JDBC-Compliant
driver always returns true.

True

Table 3-3: Return Values for DatabaseMetaData Methods

Method Description Returns
Dharma Systems Inc. 3-11

JDBC Driver
supportsSubqueriesInQuanti-
fieds()

Are subqueries in quantified
expressions supported? A JDBC-
Compliant driver always returns
true.

True

supportsTableCorrelation-
Names()

Are table correlation names sup-
ported? A JDBC-Compliant driver
always returns true.

True

supportsTransactionIsolation-
Level(int)

Does the database support the
given transaction isolation level?

True

supportsTransactions () Are transactions supported? If not,
commit is a no-op and the isolation
level is TRANSACTION_NONE.

True

supportsUnion() Is SQL UNION supported? True

supportsUnionAll() Is SQL UNION ALL supported? True

usesLocalFilePerTable() Does the database use a file for
each table?

False

usesLocalFiles() Does the database store tables in a
local file?

False

JDBC2.0

deletesAreDetected(int) Indicates whether or not a visible
row delete can be detected by call-
ing ResultSet.rowDeleted().

False

getConnection() Retrieves the connection that pro-
duced this metadata object.

The connection that produced
this metadata object

getUDTs(String, String, String,
int[])

Gets a description of the user-
defined types defined in a particular
schema.

Empty ResultSet object

insertsAreDetected(int) Indicates whether or not a visible
row insert can be detected by call-
ing ResultSet.rowInserted().

False

othersDeletesAreVisible(int) Indicates whether deletes made by
others are visible.

False

othersInsertsAreVisible(int) Indicates whether inserts made by
others are visible.

False

othersUpdatesAreVisible(int) Indicates whether updates made by
others are visible.

False

ownDeletesAreVisible(int) Indicates whether a result set's own
deletes are visible.

False

ownInsertsAreVisible(int) Indicates whether inserts made by
others are visible.

False

ownUpdatesAreVisible(int) Indicates whether a result set's own
updates are visible.

False

Table 3-3: Return Values for DatabaseMetaData Methods

Method Description Returns
3-12 Dharma Systems Inc.

JDBC Conformance Notes
supportsBatchUpdates() Indicates whether the driver sup-
ports batch updates.

True

supportsResultSetType(int) Does the database support the
given result set type?

True if result set type is
FORWARD_ONLY

supportsResultSetConcur-
rency(int, int)

Does the database support the
concurrency type in combination
with the given result set type?

True if result set type is
FORWARD_ONLY and if con-
currency type is
CONCUR_READ_ONLY

updatesAreDetected(int) Indicates whether or not a visible
row update can be detected by call-
ing the method ResultSet.rowUp-
dated.

False

JDBC3.0

supportsSavepoints() Does the database support save-
points

False

supportsNamedParameters() Does the database support named
parameters to callable statements

False

supportsMultipleOpenResults() Indicates whether it is possible to
have multiple ResultSet objects
returned from a Callable Statement
object simultaneously

False

supportsGetGeneratedKeys() Indicates whether auto-generated
keys can be retrieved after a state-
ment has been executed

False

getSuperTypes(String, String,
String)

Gets a description of user-defined
type hierarchies defined in a partic-
ular schema in this database

Empty ResultSet object

getSuperTables(String, String,
String)

Gets a description of tables defined
in a particular schema in this data-
base

Empty ResultSet object

getAttributes(String, String,
String, String)

Gets a description of the given
attribute of the given type for a
user-defined type that is available
in the given schema and catalog

Empty ResultSet object

supportsResultSetHoldability(int) Does the database support the
given result set holdability

True if result set holdability is
Result-
Set.CLOSE_CURSORS_AT_
COMMIT, otherwise False

getResultSetHoldability() Gets the default holdability of this
ResultSet object

Always returns Result-
Set.CLOSE_CURSORS_AT_
COMMIT

getDatabaseMajorVersion() Gets the major version number of
the underlying database

returns 9

Table 3-3: Return Values for DatabaseMetaData Methods

Method Description Returns
Dharma Systems Inc. 3-13

JDBC Driver
3.3 ERROR MESSAGES
The error messages generated by the driver, along with associated SQLSTATE and
Dharma error code values, are documented in the Dharma SDK SQL Reference Man-
ual.

getDatabaseMinorVersion() Gets the minor version number of
the underlying database

returns 0

getJDBCMajorVersion() Gets the major JDBC version num-
ber of this driver

returns 3

getJDBCMinorVersion() Gets the minor JDBC version num-
ber of this driver

returns 0

getSQLStateType() Indicates whether the SQLStates
returned by SQLException.getSQL-
State is X/Open SQL CLI or SQL99

returns sqlState99

locatorsUpdateCopy() Indicates whether updates made to
LOB are made on a copy or directly
to the LOB

“Driver does not support this”
Exception

supportsStatementPooling() Does the database support state-
ment pooling

False

Table 3-3: Return Values for DatabaseMetaData Methods

Method Description Returns
3-14 Dharma Systems Inc.

Appendix A

Glossary
A.1 TERMS

add [an ODBC data source]
Make a data source available to ODBC through the Add operation of the ODBC
Administrator utility. Adding a data source tells ODBC where a specific database
resides and which ODBC driver to use to access it. Adding a data source also invokes
a setup dialog box for the particular driver so you can provide other details the driver
needs to connect to the database.

alias
A temporary name for a table or column specified in the FROM clause of an SQL
query expression. Also called correlation name. Derived tables and search conditions
that join a table with itself must specify an alias. Once a query specifies an alias, ref-
erences to the table or column must use the alias and not the underlying table or col-
umn name.

applet
A special kind of Java program whose compiled class files a Java-enabled browser
can download from the Internet and run.

ASCII
(American Standard Code for Information Interchange) A 7-bit character set that pro-
vides 128 character combinations.

bytecode
Machine-independent code generated by the Java compiler and executed by the Java
interpreter.

candidate key
Another term for unique key.

cardinality
Number of rows in a result table.

Cartesian product
Also called cross-product. In a query expression, the result table generated when a
FROM clause lists more than one table but specifies no join conditions. In such a
case, the result table is formed by concatenating every row of every table with all
other rows in all tables. Typically, Cartesian products are not useful and are slow to
process.
Dharma Systems Inc. A-1

JDBC Driver
client
Generally, in client/server systems, the part of the system that sends requests to serv-
ers and processes the results of those requests.

collation
The rules used to control how character strings in a character set compare with each
other. Each character set specifies a collating sequence that defines relative values of
each character for comparing, merging and sorting character strings. In addition, stor-
age systems may define additional collations that SQL statements specify with the
COLLATE clause in column definitions, column references, and character-string ref-
erences.

column alias
An alias specified for a column. See alias.

constraint
Part of an SQL table definition that restricts the values that can be stored in a table.
When you insert, delete, or update column values, the constraint checks the new val-
ues against the conditions specified by the constraint. If the value violates the con-
straint, it generates an error. Along with triggers, constraints enforce referential
integrity by insuring that a value stored in the foreign key of a table must either be null
or be equal to some value in the matching unique or primary key of another table.

correlation name
Another term for alias.

cross product
Another term for Cartesian product.

data dictionary
Another term for system catalog.

data source
See ODBC data source.

derived table
A virtual table specified as a query expression in the FROM clause of another query
expression.

driver manager
See JDBC driver manager and ODBC driver manager.

field handle
In the storage interfaces, a handle that identifies storage for data stored in columns
defined with the SQL LONG VARCHAR or LONG VARBINARY data type. Imple-
mentations create field handles when the SQL engine calls the tpl_hdl_t::tpl_insert
routine. (This is in contrast to conventional data-type columns, for which the SQL
engine passes actual values to the insert routine.) Similarly, for fetch routines, imple-
mentations return field handles instead of the actual long data values.
A-2 Dharma Systems Inc.

Glossary
flat-file storage system / storage manager
A storage system and storage manager supplied with Dharma SDK . It provides an
example of an implementation of the storage interfaces. In addition, implementations
can use it as a simple repository that can be used for storing system catalog tables.
Implementations that do not support table creation, for instance, can use the flat-file
storage system for system catalog tables.

foreign key
A column or columns in a table whose values must either be null or equal to some
value in a corresponding column (called the primary key) in another table. Use the
REFERENCES clause in the SQL CREATE TABLE statement to create foreign keys.

form of use
The storage format for characters in a character set. Some character sets, such as
ASCII, require one byte (octet) for each character. Others, such as Unicode, use two
bytes, and are called multi-octet character sets.

handle
In the storage interfaces, a temporary identifier for database objects. Storage manag-
ers generate handles when the SQL engine calls routines to open tables, indexes, table
scans, and index scans, or to access long data-type columns. The SQL engine uses the
handle on subsequent calls to scan, fetch, insert, and update operations. More gener-
ally, a handle is a memory pointer associated with a temporary object which does not
last across a user level SQL session. Compare with identifier.

identifier
In the storage interfaces, a persistent object that identifies database elements such as
tables and indexes. Storage managers generate identifiers when the database element
is created. The identifier is stored in the appropriate system table along with other
information that describes the object. Types of identifiers include table, index, tuple,
tuples, procedure, and trigger. Compare with handle.

index handle
In the storage interfaces, a handle that identifies an index open for updating. Imple-
mentations generate index handles when the SQL engine calls rss_hdl_t::ix_hdl_ctor.

Java snippet
See snippet.

JDBC
Java Database Connectivity: a part of the Java language that allows applications to
embed standard SQL statements and access any database that implements a JDBC
driver.

JDBC driver
Database-specific software that receives calls from the JDBC driver manager, trans-
lates them into a form that the database can process, and returns data to the applica-
tion.
Dharma Systems Inc. A-3

JDBC Driver
JDBC driver manager
A Java class that implements methods to route calls from a JDBC application to the
appropriate JDBC driver for a particular JDBC URL.

join
A relational operation that combines data from two tables.

input parameter
In a stored procedure specification, an argument that an application must pass when it
calls the stored procedure. In an SQL statement, a parameter marker in the statement
string that acts as a placeholder for a value that will be substituted when the statement
executes.

interface
In Java, a definition of a set of methods that one or more objects will implement.
Interfaces declare only methods and constants, not variables. Interfaces provide mul-
tiple-inheritance capabilities.

main-memory storage system / storage manager
A storage system and storage manager supplied with Dharma SDK . It provides a
mechanism for implementations to store data in memory instead of on disk. By using
the main-memory storage system for volatile data such as temporary sort tables and
dynamic indexes, implementations can improve performance of many queries, such as
joins.

manager
A main component of the SQL engine. In particular, the term storage manager refers
to a completed implementation of the storage interfaces that provides access to an
underlying storage system.. Besides one or more storage managers, the SQL engine
includes several managers, including the SQL statement manager, parser, and opti-
mizer.

metadata
Data that details the structure of tables and indexes in the proprietary storage system.
The SQL engine stores metadata in the system catalog.

octet
A group of 8 bits. Synonymous with byte, and often used in descriptions of character-
set encoding format.

ODBC application
Any program that calls ODBC functions and uses them to issue SQL statements.
Many vendors have added ODBC capabilities to their existing Windows-based tools.

ODBC data source
In ODBC terminology, a specific combination of a database system, the operating sys-
tem it uses, and any network software required to access it. Before applications can
access a database through ODBC, you use the ODBC Administrator to add a data
source -- register information about the database and an ODBC driver that can connect
to it -- for that database. More than one data source name can refer to the same data-
base, and deleting a data source does not delete the associated database.
A-4 Dharma Systems Inc.

Glossary
ODBC driver
Vendor-supplied software that processes ODBC function calls for a specific data
source. The driver connects to the data source, translates the standard SQL statements
into syntax the data source can process, and returns data to the application. Dharma
SDK includes an ODBC driver that provides access to proprietary storage systems
underlying the ODBC server.

ODBC driver manager
A Microsoft-supplied program that routes calls from an application to the appropriate
ODBC driver for a data source.

optimizer
Within the SQL engine, the manager that analyzes costs and statistics associated with
the statement and converts the relational algebra tree to the most efficient form for
execution. The optimizer stores the trees for later use.

output parameter
In a stored procedure specification, an argument in which the stored procedure returns
a value after it executes.

package
A group of related Java classes and interfaces, like a class library in C++. The Java
development environment includes many packages of classes that procedures can
import. The Java runtime system automatically imports the java.lang package. Stored
procedures must explicitly import other classes by specifying them in the IMPORT
clause of a CREATE PROCEDURE statement.

parameter marker
A question mark (?) in a procedure call or SQL statement string that acts as a place-
holder for an input or output parameter supplied at runtime when the procedure exe-
cutes. The CALL statement (or corresponding ODBC or JDBC escape clause) use
parameter markers to pass parameters to stored procedures, and the SQLIStatement,
SQLPStatement, and SQLCursor objects use them within procedures.

postfix notation
Notation in which the numbers precede the operation. For example, 2 + 2 is expressed
as 2 2 +, and 10 - 3 * 4 would be 10 3 4 * -. If a storage manager supports processing
of expressions, the SQL engine passes them to the storage manager using postfix nota-
tion.

primary key
A subset of the fields in a table, characterized by the constraint that no two records in
a table may have the same primary key value, and that no fields of the primary key
may have a null value. Primary keys are specified in a CREATE TABLE statement.

procedure body
In a stored procedure, the Java code between the BEGIN and END keywords of a
CREATE PROCEDURE statement.
Dharma Systems Inc. A-5

JDBC Driver
procedure result set
In a stored procedure, a set of data rows returned to the calling application. The num-
ber and data types of columns in the procedure result set are specified in the RESULT
clause of the CREATE PROCEDURE statement. The procedure can transfer data
from an SQL result set to the procedure result set or it can store data generated inter-
nally. A stored procedure can have only one procedure result set.

procedure specification
In a CREATE PROCEDURE statement, the clauses preceding the procedure body that
specify the procedure name, any input and output parameters, any result set columns,
and any Java packages to import.

procedure variable
A Java variable declared within the body of a stored procedure, as compared to a pro-
cedure input parameter or output parameter, which are declared outside the procedure
body and are visible to the application that calls the stored procedure.

query expression
The fundamental element in SQL syntax . Query expressions specify a result table
derived from some combination of rows from the tables or views identified in the
FROM clause of the expression. Query expressions are the basis of SELECT, CRE-
ATE VIEW, and INSERT statements, and can be used in some expressions and search
conditions.

referential integrity
The condition where the value stored in a database table's foreign key must either be
null or be equal to some value in another table's the matching unique or primary key.
SQL provides two mechanisms to enforce referential integrity: constraints specified
as part of CREATE TABLE statements prevent updates that violate referential integ-
rity, and triggers specified in CREATE TRIGGER statements execute a stored proce-
dure to enforce referential integrity.

repertoire
The set of characters allowed in a character set .

result set
In a stored procedure, either an SQL result set or a procedure result set.

More generally, another term for result table.

result table
A virtual table of values derived from columns and rows of one or more tables that
meet conditions specified by an SQL query expression.

row identifier
Another term for tuple identifier.

scan handle
In the storage interfaces, a handle that identifies an index or table open for scan opera-
tions. Implementations generate scan handles when the SQL engine calls
rss_hdl_t::ix_scanhdl_ctor or rss_hdl_t::tpl_scan_hdl_ctor.
A-6 Dharma Systems Inc.

Glossary
search condition
The SQL syntax element that specifies a condition that is true or false about a given
row or group of rows. Query expressions and UPDATE statements can specify a
search condition. The search condition restricts the number of rows in the result table
for the query expression or UPDATE statement. Search conditions contain one or
more predicates. Search conditions follow the WHERE or HAVING keywords in
SQL statements.

selectivity
The fraction of a table's rows returned by a query.

server
Generally, in client/server systems, the part of the system that receives requests from
clients and responds with results to those requests.

snippet
In a stored procedure, the sequence of Java statements between the BEGIN and END
keywords in the CREATE PROCEDURE (or CREATE TRIGGER) statement. The
Java statements become a method in a class the SQL engine creates and submits to the
Java compiler.

SQL diagnostics area
A data structure that contains information about the execution status (success, error or
warning conditions) of the most recent SQL statement. The SQL-92 standard speci-
fied the diagnostics area as a standardized alternative to widely varying implementa-
tions of the SQLCA. Dharma SDK supports both the SQLCA and the SQL
diagnostics area. The SQL GET DIAGNOSTICS statement returns information about
the diagnostics area to an application, including the value of the SQLSTATE status
parameter.

SQL engine
The core component of the Dharma SDK environment. The SQL engine receives
requests from applications, processes them, and returns results. The SQL engine calls
the storage interfaces to convey requests to an underlying storage system.

SQLCA
SQL Communications area: A data structure that contains information about the exe-
cution status (success, error or warning conditions) of the most recent SQL statement.
The SQLCA includes an SQLCODE field. The SQLCA provides the same informa-
tion as the SQL diagnostics area, but is not compliant with the SQL-92 standard.
Dharma SDK supports both the SQLCA and the SQL diagnostics area.

SQLCODE
An integer status parameter whose value indicates the condition status returned by the
most recent SQL statement. An SQLCODE value of zero means success, a positive
value means warning, and a negative value means an error status. SQLCODE is
superseded by SQLSTATE in the SQL-92 standard. Applications declare either SQL-
STATE or SQLCODE, or both. SQL returns the status to SQLSTATE or SQLCODE
after execution of each SQL statement.
Dharma Systems Inc. A-7

JDBC Driver
SQL result set
In a stored procedure, the set of data rows generated by an SQL statement (SELECT
and, in some cases, CALL).

SQLSTATE
A 5-character status parameter whose value indicates the condition status returned by
the most recent SQL statement. SQLSTATE is specified by the SQL-92 standard as a
replacement for the SQLCODE status parameter (which was part of SQL-89). SQL-
STATE defines many more specific error conditions than SQLCODE, which allows
applications to implement more portable error handling. Applications declare either
SQLSTATE or SQLCODE, or both. SQL returns the status to SQLSTATE or SQL-
CODE after execution of each SQL statement.

storage environment
The combination of storage systems which have implemented the storage interfaces.
One possible combination of storage systems in an implementation is the Dharma-
supplied flat-file and main-memory storage system, with a proprietary database con-
taining user data.

storage interfaces
C++ routines called by the SQL engine that access and manipulate data in a propri-
etary storage system. A proprietary storage system must implement supplied storage
stub templates to map the storage interfaces to the underlying storage system. Once
filled in for a particular storage system, the completed storage interfaces are called a
storage manager.

storage manager
A completed implementation of Dharma SDK storage interfaces. A storage manager
receives calls from the SQL engine through the storage interfaces and accesses the
underlying proprietary storage system to retrieve and store data.

storage system
The proprietary database system that underlies a storage manger. Dharma SDK pro-
vides an SQL interface to a storage system through the SQL engine and its storage
interfaces.

stored procedure
A snippet of Java source code embedded in an SQL CREATE PROCEDURE state-
ment. The source code can use all standard Java features as well as use Dharma SDK
-supplied Java classes for processing any number of SQL statements.

stub interfaces
Another term for storage interfaces. Also called simply stubs.

system catalog
Tables created by the SQL engine that store information about tables, columns, and
indexes that make up the database. The SQL engine creates and manages the system
catalog independent of the proprietary storage system.

system tables
Another term for system catalog.
A-8 Dharma Systems Inc.

Glossary
dharma
The default owner name for all system tables in a Dharma SDK database. Users must
qualify references to system tables as systpe.tablename.

table handle
In the storage interfaces, a handle that identifies a table open for non-scan operations.
Implementations generate scan handles when the SQL engine calls
rss_hdl_t::tpl_hdl_ctor.

table space
A mechanism to partition tables among different storage areas. In some storage sys-
tems, for instance, table spaces correspond to separate data files among which data in
tables can be distributed. This arrangement can improve performance by distributing
data in a table on different disk drives. Different storage systems implement the con-
cept of storage areas in different ways, if at all.

tid
Another term for tuple identifier.

transaction
A group of operations whose changes can be made permanent or undone only as a
unit. Once implementations add the ability to change data in the proprietary storage
system, they must also implement transaction management to protect against data cor-
ruption.

trigger
A special type of stored procedure that helps insure referential integrity for a database.
Like stored procedures, triggers also contain Java source code (embedded in a CRE-
ATE TRIGGER statement) and use Dharma SDK Java classes. However, triggers are
automatically invoked ("fired") by certain SQL operations (an insert, update, or delete
operation) on the trigger's target table.

trigger action time
The BEFORE or AFTER keywords in a CREATE TRIGGER statement. The trigger
action time specifies whether the actions implemented by the trigger execute before or
after the triggering INSERT, UPDATE, or DELETE statement.

trigger event
The statement that causes a trigger to execute. Trigger events can be SQL INSERT,
UPDATE, or DELETE statements that affect the table for which a trigger is defined.

triggered action
The Java code within the BEGIN END clause of a CREATE TRIGGER statement.
The code implements actions to be completed when a triggering statement specifies
the target table.

tuple identifier
A unique identifier for a tuple (row) in a table. Storage managers return a tuple identi-
fier for the tuple that was inserted after an insert operation. The SQL engine passes a
tuple identifier to the delete, update, and fetch stubs to indicate which tuple is affected.
Dharma Systems Inc. A-9

JDBC Driver
The SQL scalar function ROWID and related functions return tuple identifiers to
applications.

Unicode
A superset of the ASCII character set that uses two bytes for each character rather than
ASCII's 7-bit representation. Able to handle 65,536 character combinations instead of
ASCII's 128, Unicode includes alphabets for many of the world's languages. The first
128 codes of Unicode are identical to ASCII, with a second-byte value of zero.

unique key
A column or columns in a table whose value (or combination of values) must be
unique. Use the UNIQUE clause of the SQL CREATE TABLE statement to create
unique keys. Unique keys are also called candidate keys.

URL
In general, a Universal Resource Locator used to specify protocols and locations of
items on the Internet. In JDBC, a database connection string in the form jdbc:subpro-
tocol:subname. The Dharma JDBC Driver format for database URLs is
jdbc:dharma:T:host_name:db_name.

utility class
A set of utility functions that a storage manager uses to assemble and disassemble data
elements passed through the storage interfaces.

view
A virtual table that recreates the result table specified by a SELECT statement. No
data is stored in a view, but other queries can refer to it as if it were a table containing
data corresponding to the result table it specifies.

virtual table
A table of values that is not physically stored in a database, but instead derived from
columns and rows of other tables. SQL generates virtual tables in its processing of
query expressions: the FROM, WHERE, GROUP BY and HAVING clauses each
generate a virtual table based on their input.

virtual machine
The Java specification for a hardware-independent and portable language environ-
ment. Java language compilers generate code that can execute on a virtual machine.
Implementations of the Java virtual machine for specific hardware and software plat-
forms allow the same compiled code to execute without modification.
A-10 Dharma Systems Inc.

Index
A
API, JDBC 1-1
Applet 2-2
Application server 2-3
Architecture, JDBC 1-1
Authentication detail 2-5
B
Bridge drivers 1-2
C
Class files location 2-2
Class.forName 2-4
Connecting 2-4
Connecting to a database 2-4
Connection

example 2-5
Connection string 2-4
D
Database connection

example 2-5
Database connectivity 2-4
DatabaseMetaData 3-2

return values 3-2
Dharma dhserver process 2-1
Dharma/SQL JDBC driver 1-3
DhJDBCApplet.class 2-2
DhJDBCTest.jar 2-2
Dhserver process 2-1
Driver Manager

JDBC 1-1
Driver, types of 1-2
DriverManager.GetConnection 2-4
E
Environment variables 2-3
Error messages 3-14
G
getXXX 3-1

method 3-1
I
Internet Explorer 2-1
J
JAR file 2-1
Java Archive file 2-1
Java URL connection string 2-4
java.sql 1-1

JavaSoft JDK Version 1.1.3 (Windows) 2-1
JavaSoft JDK Version 1.1.5 (UNIX) 2-1
JavaSoft JDK™ Version 1.4 2-1
JDBC 1-1

applet 2-1
application server 2-3
architecture 1-1
class files location 2-2
comparison to ODBC 1-3
connect to a database 2-4
Dharma/SQL JDBC driver 1-3
driver manager 1-1
driver setup 2-1
drivers 1-2
environment variables 2-3
error messages 3-14
performance 2-8
setup 2-1
type 1 driver 1-2
type 2 driver 1-3
type 3 driver 1-3
type 4 driver 1-3

N
Native-Method drivers 1-3
Native-Protocol All-Java drivers (Dharma/SQL) 1-3
Netscape 2-1
Network-Protocol All-Jave drivers 1-3
O
Object

Properties 2-5
ODBC

compared to JDBC 1-3
P
Performance improvements 2-8
PreparedStatement.setXXX 3-1
Properties object 2-5
R
Required software 2-1
Return values 3-2
S
Setting up the Dharma JDBC Driver 2-1
setXXX 3-1
T
Transaction management 2-8
Type 1 JDBC driver 1-2
Index-i

Type 2 JDBC driver 1-3
Type 3 JDBC driver 1-3
Type 4 JDBC driver 1-3
Types of JDBC drivers 1-2
U
UNIX

environment variables 2-3
URL connection string 2-4
User authentication detail 2-5
V
Virtual machine 2-1
W
Web page 2-2
Web Server 2-1
Windows NT

envrionment variables 2-3
Index-ii

	JDBC Driver Guide
	Introduction
	Purpose of This Manual
	Audience
	Structure
	Syntax Diagram Conventions
	Related Documentation

	Chapter 1
	Introduction
	1.1 Overview
	1.2 JDBC Architecture
	Figure 1-1: JDBC Architecture

	1.3 Types of JDBC Drivers
	1.3.1 JDBC-ODBC Bridge Drivers
	1.3.2 Native-Method Drivers
	1.3.3 Network-Protocol All-Java Drivers
	1.3.4 Native-Protocol All-Java Drivers (Dharma SDK JDBC Driver)

	1.4 JDBC Compared to ODBC

	Chapter 2
	Basic JDBC Driver Operations
	2.1 Introduction
	2.2 Required Java Environment
	2.3 Setting Up the JDBC Driver: Web Server
	2.3.1 Copying JDBC Driver and Applet Class Files
	2.3.2 Compressing Class Files Into Java Archive Files
	2.3.3 Creating a Web Page That Invokes the Applet

	2.4 Setting Up the JDBC Driver: Application Server
	2.4.1 Setting Environment Variables

	2.5 Connecting to a Database
	2.5.1 Load the JDBC Driver Using Class.forName
	2.5.2 Connect to the JDBC Driver Using DriverManager.getConnection
	2.5.2.1 Java URL Connection String
	2.5.2.2 User Authentication Detail

	2.5.3 An Example Connection
	Example 2-1: Loading the JDBC Driver and Connecting to a Database

	2.5.4 Connection Pooling Support in JDBC
	2.5.4.1 javax.sql Package
	2.5.4.2 Using A DataSource Object To Make A Connection
	2.5.4.3 Connection Pooling
	2.5.4.4 Implementation in Dharma JDBC Driver

	2.6 Managing Transactions Explicitly to Improve Performance

	Chapter 3
	JDBC Conformance Notes
	3.1 Supported Data Types
	Table 3-1: Mapping Between Java and JDBC Data Types
	Table 3-2: Mapping Between JDBC and Java Data Types

	3.2 Return Values for DatabaseMetaData Methods
	Example 3-1: Getting Driver Information Through DatabaseMetadata Methods
	Table 3-3: Return Values for DatabaseMetaData Methods

	3.3 Error Messages

	Appendix A
	Glossary
	A.1 Terms

