ISQL Reference Manual

November 2004

Version 9.0

Thismanual providesreference material for thel SQL interactive tool provided in the Dharma
SDK . It alsoincludesatutorial describing how to usethe I SQL utility.

November 2004

© 1988-2004 Dharma Systems, Inc. All rights reserved.
Information in this document is subject to change without notice.

Dharma Systems Inc. shall not be liable for any incidentd, direct, special or consequential damages whatsoever arising
out of or relating to this material, even if Dharma Systems I nc. has been advised, knew or should have known of the
possibility of such damages.

The software described in this manual is furnished under alicense agreement or nondisclosure agreement. The soft-
ware may be used or copied only in accordance with the terms of this agreement. It is against the law to copy this soft-
ware on magnetic tape, disk or any other medium for any purpose other than for backup or archival purposes.

Thismanual containsinformation protected by copyright. No part of this manual may be photocopied or reproduced in
any form without prior written consent from Dharma Systems Inc.

Use, duplication, or disclosure whatsoever by the Government shall be expressly subject to restrictions as set forth in
subdivision (b)(3)(ii) for restricted rights in computer software and subdivision (b)(2) for limited rightsin technical
data, both as set in 52.227-7013.

Dharma Systems welcomes your comments on this document and the software it describes. Send comments to:
Documentation Comments
Dharma Systems, Inc.
Brookline Business Center.
#55, Route 13
Brookline, NH 03033
Phone: 603-732-4001
Fax: 603-732-4003
Electronic Mail: support@dharma.com
Web Page: http://www.dharma.com
Dharma/SQL, Dharma AppLink, Dharma SDK and Dharma Integrator are trademarks of Dharma Systems, Inc.
The following are third-party trademarks:

Microsoft isa registered trademark, and ODBC, Windows, Windows NT, Windows 95 and Windows 2000 are trade-
marks of Microsoft Corporation.

Oracleisaregistered trademark of Oracle Corporation.

Java, Java Development Kit, Solaris, SPARC, SunOS, and SunSoft are registered trademarks of Sun Microsystems,
Inc.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

Introduction

Purpose of ThiSGUIE oo e e Xi

AUIENCE. . . o Xi

Syntax Diagram CONVENLIONSottt Xi

Related DOCUMENEALIONottt e e e e e e et Xi

1 Introduction

L OVEIVIBI « ottt et e e e e e e e e 1-1

1.2 Starting Interactive SQLot 1-1

1.3 Statement HisStory SUPPOIT. oo 1-2

1.4 Formatting Output of ISQL QUENESot e 1-3
1.4.1 Formatting Column Display with the COLUMN Statement. 1-6
1.4.2 Summarizing Data with the DISPLAY, COMPUTE, and BREAK Statements.. 1-7
1.4.3 Adding Beginning and Concluding Titleswiththe TITLE Statement 1-10

1.5TheHELPand TABLE Statements.ot e e 1-11

1.6 TransaCtion SUPPOIT. . . . o . oottt e e e e e e e e e 1-12

17 1SQL REFEIENCE. . . oot 1-12
L7212 @ (EXECULE) . . . o vttt et e e e e e e e e e e e 1-12
17 2 BREAK . 1-13
L7 3 CLEAR. . 1-16
174 COLUMN ..o 1-18
L7 5 COMPUTE. . .o 1-23
176 DEFINE . . 1-24
L7 7 DISPL AY e 1-25
L7 B ED T e 1-27
L7 O EXIT or QUIT L e 1-28
L7 0 GET .o 1-29
L7 L HEL P . 1-30
L7 A2 HISTORY .ottt e e 1-31
L7.A3HOST Or SH OF ! oo 1-32
L7 A LI ST 1-33
L7.A5 QUIT OF EXIT o e e e e e e 1-34
L7 A6 RUN .. 1-34
L7 07 SAVE . 1-35
L7 A8 SET . o 1-36
1709 SHOW o 1-39
1720 SPOOL . . . oottt e 1-40
L7 2L ST AR . 1-41
L7 22 TABLE. . . 1-42
L7 23 TITLE. o e 1-44

Vi

Tables

Table 1-1: ISQL Statements for Statement History Support
Table 1-2: ISQL Statements for Query Formatting.

Table 1-3: Numeric Format Stringsfor the COLUMN Statement

Table 1-4: Date-Time Format Strings for the Column Statement

ISQL Statements for Statement History Support 1-3

ISQL Statements for Query Formatting 1-4

Numeric Format Strings for the COLUMN Statement 1-19
Date-Time Format Strings for the Column Statement 1-19

Vii

Viii

Examples

Example 1-1: Unformatted Query Display fromISQL 1-5
Example 1-2: Controlling Display Width of Character Columns. 1-6
Example 1-3: Customizing Format of Numeric Column Displays. 1-7
Example 1-4: Specifying Column Breaks and Values with DISPLAY 1-8
Example 1-5: Calculating Statistics on Column Breakswith COMPUTE 1-9
Example 1-6: Specifying a Query Header and Footer with TITLE 1-10
Example 1-7: Sample ISQL SCript.ot 1-13

Unformatted Query Display from ISQL 1-5

Controlling Display Width of Character Columns 1-6
Customizing Format of Numeric Column Displays 1-7
Specifying Column Breaks and Values with DISPLAY 1-8
Calculating Statistics on Column Breaks with COMPUTE 1-9
Specifying a Query Header and Footer with TITLE 1-10
Sample ISQL script 1-13

Introduction

PURPOSE OF THIS GUIDE

Thismanual provides reference material for the ISQL interactive SQL utility provided
inthe Dharma SDK. It also includes atutorial describing how to use the ISQL utility

AUDIENCE

Thereader of this manual should be familiar with the concepts described in the
Dharma SDK User Guide.

SYNTAX DIAGRAM CONVENTIONS

UPPERCASE Uppercase type denotes reserved words. You must
include reserved words in statements, but they can be
upper or lower case.

lowercase Lowercase type denotes either user-supplied elements
or names of other syntax diagrams. User-supplied ele-
ments include names of tables, host-language variables,
expressions and literals. Syntax diagrams can refer to
each other by name. If adiagram is named, the name
appearsin lowercase type above and to the left of the
diagram, followed by a double-colon (for example,
privilege ::). The name of that diagram appearsin low-
ercase in diagramsthat refer to it.

{} Braces denote a choice among mandatory elements.
They enclose aset of options, separated by vertica bars
(]). You must choose at least one of the options.

[Brackets denote an optiona element or a choice among
optional elements.

| Vertical bars separate a set of options.

A horizontal ellipsis denotes that the preceding element
can optionally be repeated any number of times.

OFF Parentheses and other punctuation marks are required
elements. Enter them as shown in syntax diagrams.

RELATED DOCUMENTATION

Refer to the following guides for more information:

Dharma Systems Inc. Xi

ISQL Reference

Xii

Dharma SDK SQL Reference
Manual

Thismanual describes syntax and semantics of SQL
language statements and elements for the Dharma
SDK .

Dharma SDK User Guide

Thismanua describes the Dharma Software Develop-
ment Kit (SDK).It describes implementing JDBC,
ODBC and .NET accessto proprietary data and consid-
erations for creating arelease kit to distribute the com-
pleted implementation.

Dharma SDK ISQL Reference
Manual

This manua providesreference materia for the ISQL
interactive tool provided in the Dharma SDK environ-
ment. It also includes a tutoria describing how to use
the ISQL utility.

Dharma SDK ODBC Driver
Guide

Thismanual describes Dharma ODBC SDK support for
ODBC (Open Database Connectivity) interface and
how to configure the Dharma SDK ODBC Driver.

Dharma SDK JDBC Driver
Guide

Describes Dharma JDBC SDK support for the JDBC
interface and how to configure the Dharma SDK JDBC
Driver.

Dharma SDK .NET Data Pro-
vider Guide

This guide gives an overview of the NET Data Pro-
vider. It describes how to set up and usethe .NET Data
Provider to access a Dharma SDK database from .NET
applications.

Dharma Systems Inc.

Chapter 1

Introduction

11 OVERVIEW

Interactive SQL (often referred to throughout this manual as 1SQL) isa utility sup-
plied with Dharma SDK that lets you issue SQL statements directly from aterminal
and see results displayed at the terminal. You can use interactive SQL to:

e Learn how SQL statements work
» Test and prototype SQL statements to be embedded in programs
* Maodify an existing database with data definition statements

» Perform ad-hoc queries and generate formatted reports with special 1SQL format-
ting statements

With few exceptions, you can issue any SQL statement in interactive SQL that can be
embedded in a program, including CREATE, SELECT, and GRANT statements.
Interactive SQL includes an online help facility with syntax and descriptions of the
supported statements.

This chapter describes only those statements that are specificto ISQL. Seethe
Dharma SDK SQL Reference Manual for detailed reference information on standard
SQL statements that can be issued in other environments.

1.2 STARTING INTERACTIVE SQL

Start ISQL by issuing the isgl command at the shell prompt. Dharma SDK invokes
ISQL and displaysthe ISQL prompt:

$ isql sanpledb

Dharma/i sqgl Version 09.00.0000
Dharma Systens |nc (C) 1988-2004.
Dharma Systens Pvt Ltd (C) 1988-2004.

| SQL>
Issue Dharma SDK statements at the |SQL > prompt and terminate them with a semi-

colon. You can continue statements on multiple lines. 1SQL automatically prompts
for continuation lines until you terminate the statement with a semicolon.

To execute host operating system commands from the | SQL prompt, type HOST fol-
lowed by the operating system command. After completion of the HOST statement,
the ISQL> prompt returns. To execute SQL scripts from ISQL, type @ followed by
the name of the file containing SQL statements.

Dharma Sytems Inc

| ISQL Reference

Syntax

Arguments

To exit from interactive SQL, type EXIT or QUIT.

You can supply optional switches and arguments to the isgl command.

isql [-s script _file] [-u user_nane] [-a password]
[connect _string]

-sseript_file
The name of an SQL script file that Dharma SDK executes when ISQL isinvoked.

Note: If the file name has a space, such as:
test script.sql
The file name must be enclosed in doubles quotes, such as:

isgl -s"test script.sql” testdb

-U user_name
The user name Dharma SDK usesto connect to the database specified in the
connect_string. Dharma SDK verifies the user name against a corresponding pass-
word before it connects to the database. If omitted, the default value depends on the
environment. (On UNIX, the value of the DH_USER environment variable specifies
the default user name. If DH_USER is not set, the value of the USER environment
variable specifies the default user name.)

-a passwor d

The password Dharma SDK uses to connect to the database specified in the
connect_string. Dharma SDK verifies the password against a corresponding user
name before it connects to the database. |f omitted, the default value depends on the
environment. (On UNIX, the value of the DH_PASSWD environment variable speci-
fiesthe default password.)

connect_string

A string that specifies which database to connect to. The connect_string can be asim-
ple database name or a complete connect string. Seethe CONNECT statement in the
Dharma SDK Reference Manua for details on how to specify a complete connect
string. If omitted, the default value depends on the environment. (On UNIX, the
value of the DB_NAME environment variable specifies the default connect string.)

1.3 STATEMENT HISTORY SUPPORT

ISQL provides statementsto simplify the process of executing statements you already
typed. 1SQL implements a history mechanism similar to the one found in the csh (C-
shell) supported by UNIX.

The following table summarizes the ISQL statements that support retrieving, modify-
ing, and rerunning previously entered statements.

Dharma Sytems Inc

Introduction

Table 1-1: ISQL Statements for Statement History Support

Statement Summary

HISTORY Displays a fixed number of statements (specified by
the SET HISTORY statement) which have been
entered before this statement, along with a state-
ment number for each statement. Other state-
ments take the statement number as an argument.
See section “1.7.12" on page 1-31 for details.

RUN [stmt_num] Displays and executes the current statement or
specified statement in the history buffer. See sec-
tion “1.7.16" on page 1-34 details.

LIST [stmt_num] Displays the current statement or specified state-
ment in the history buffer, and makes that state-
ment the current statement by copying it to the end
of the history list. See section “1.7.14" on page 1-
33 for details.

EDIT [stmt_num] Edits the current statement or specified statement
in the history buffer, and makes the edited state-
ment the current statement by copying it to the end
of the history list. The environment variable EDI-
TOR can be set to the editor of choice. See section
“1.7.8" on page 1-27 for details.

SAVE filename Saves the current statement in the history buffer to
the specified file, which can be then be retrieved
through the GET or START statements. See sec-
tion “1.7.17" on page 1-35 for details.

GET filename Fetches the contents of the specified file, from the
beginning of the file to the first semicolon, and
appends it to the history buffer. The statement
fetched by the GET can then be executed by using
the RUN statement. See section “1.7.10" on page
1-29 for details.

START filename [argument ...] | Fetches and executes a statement stored in the
specified file. Unlike the GET statement, START
executes the statement and accepts arguments
that it substitutes for parameter references in the
statement stored in the file. START also appends
the statement to the history buffer. See section
“1.7.21" on page 1-41 for details.

1.4 FORMATTING OUTPUT OF ISQL QUERIES

Formatting of database query results makes the output of a database query more pre-
sentable and understandable. The formatted output of an I1SQL database query can be
either displayed on the screen, written to afile, or spooled to a printer to produce a
hardcopy of the report.

Dharma Sytems Inc

ISQL Reference

ISQL includes several statementsthat provide simple formatting of SQL queries. The
following table summarizes the ISQL query-formatting statements.

Table 1-2: ISQL Statements for Query Formatting

Statement Summary

DISPLAY Displays text, variable values, and/or column values
after the specified set of rows (called a break specifica-
tion). See page 1-25 for details.

COMPUTE Performs aggregate-function computations on column
values for the specified set of rows, and assigns the
results to a variable. DISPLAY statements can then
refer to the variable to display its value. See page 1-23
for details.

BREAK Specifies at what point ISQL processes associated DIS-
PLAY and COMPUTE statements. BREAK statements
can specify that processing occurs after a change in a
column's value, after each row, after each page, or at
the end of a query. DISPLAY and COMPUTE state-
ments have no effect until you issue a BREAK state-
ment with the same break specification. See page 1-13
for details.

DEFINE Defines a variable and assigns a text value to it. When
DISPLAY statements refer to the variable, ISQL prints
the value. See page 1-24 for details.

COLUMN Controls how ISQL displays a column's values (the
FORMAT clause) and/or specifies alternative column-
heading text (the HEADING clause). See page 1-18 for

details.

TITLE Specifies text and its positioning that ISQL displays
before or after it processes a query. See page 1-44 for
details.

CLEAR Removes settings made by the previous DISPLAY,

COMPUTE, COLUMN, BREAK, DEFINE, or TITLE
statements. See page 1-16 for details.

SET LINESIZE Specifies various attributes that affect how ISQL dis-
SET PAGESIZE plays queries and results.

SET REPORT

SET ECHO

The rest of this section provides an extended example that illustrates how to use the
statements together to improve formatting.

All the examples use the same ISQL query. The query retrieves data on outstanding
customer orders. The query joinstwo tables, customers and orders. The examplesfor
the TABLE statement on page 1-42 show the columns and data types for these sample
tables.

Thefollowing exampl e shows the query and an excerpt of theresultsas ISQL displays
them without the benefit of any query-formatting statements:

1-4

Dharma Sytems Inc

Introduction

Example 1-1: Unformatted Query Display from ISQL

| SQL> sel ect c.custoner_nanme, c.custoner_city, o.order_id,

0. order _val ue
fromcustonmers c, orders o

where o.custoner_id = c.custoner_id

order by c.customer_narne;

CUSTOVER _NANME CUSTOVER _CI TY

Aer ospace Enterprises Inc. Scottsdal e
13 3000000
Aer ospace Enterprises Inc. Scottsdal e
14 1500000
Chemi cal Construction Inc. Joplin
11 3000000
Chemi cal Construction Inc. Joplin
12 7500000
Luxury Cars Inc. North Rid-
geville
21 6000000
Luxury Cars Inc. North Rid-
geville
20 5000000

Although this query retrieves the correct data, the formatting is inadeguate:

» Thedisplay for each record wraps across two lines, primarily because of the col-
umn definitions for the text columns customer_name and customer_city. 1SQL
displays the full column width (50 characters for each column) even though the
contents don't use the entire width.

* It'snot clear that the values in the order_value column represent money amounts.
The next section shows how to use the COLUMN statement to address these format-
ting issues.

In addition, you can use DISPLAY, COMPUTE, and BREAK statements to present
order summaries for each customer. Section 1.3.2 shows how to do this. Finally, you
can add text that 1SQL displays at the beginning and end of query results with the
TITLE statement, as described in Section 1.3.3.

All of these statements are independent of the actual query. You do not need to
change the query in any way to control how 1SQL formats the results.

Dharma Sytems Inc

| ISQL Reference

141

Formatting Column Display with the COLUMN Statement

You can specify the width of the display for character columns with the COLUMN
statement's "An" format string. Specify the format string in the FORMAT clause of
the COLUMN statement. You need to issue separate COLUMN statements for each
column whose width you want to control in this manner.

The following example shows COLUMN statements that limit the width of the
customer _name and customer_city columns, and re-issues the original query to show
how they affect the results.

Example 1-2: Controlling Display Width of Character Columns
| SQL> COLUMN CUSTOMER_NAME FORMAT " A19"

| SQL> COLUWN CUSTOMVER_CI TY FORMAT " A19"

| SQL> sel ect c.custoner_nanme, c.custoner_city, o.order_id,
0. order _val ue

from custonmers c, orders o
where o.custoner_id = c.custoner_id
order by c.customer_narne;

CUSTOVER _NAME CUSTOVER _CI TY ORDER_| D ORDER_VALUE
Aer ospace Enterpris Scottsdale 13 3000000
Aer ospace Enterpris Scottsdale 14 1500000
Chem cal Constructi Joplin 11 3000000
Chem cal Constructi Joplin 12 7500000
Luxury Cars Inc. North Ridgeville 21 6000000
Luxury Cars Inc. North Ri dgeville 20 5000000

Note that ISQL truncates display at the specified width. This means you should spec-
ify avaluein the FORMAT clause that accommodates the widest column value that
the query will display.

To improve the formatting of the order_value column, use the COLUMN statement's
numeric format strings. |ssue another COLUMN statement, this one for order-_value,
and specify aformat string using the "$", "9", and "," format-string characters:

» Theformat-string character 9 indicates the width of the largest number. Specify
enough 9 format-string characters to accommodate the largest value in the col-
umn.

» Theformat-string character $ directs |SQL to precede column values with a dollar
sign.

* Thecomma(,) format-string character inserts acommaat the specified position in
the display.

| 16

Dharma Sytems Inc

Introduction

For the order_value column, the format string "$99,999,999.99" displaysvaluesin a
format that clearly indicates that the values represent money. (For a complete list of
the valid numeric format characters, see “ Table 1-3:* on page 1-19.)

The following example shows the complete COLUMN statement that formats the
order_value column. As shown by issuing the COLUMN statement without any argu-
ments, this example retains the formatting from the COLUMN statementsin the previ-
ous example.

Example 1-3: Customizing Format of Numeric Column Displays

1 SQL> col um order_value format "$99, 999, 999. 99"

1 SQ> columm; -- Show all the COLUW statenments now in effect:

col um CUSTOMER NAME format "Al19" headi ng " CUSTOVER NAME"

col um CUSTOMER CITY format "Al19" heading "CUSTOVER CITY"

col uim ORDER VALUE format "$99, 999, 999. 99" heading " ORDER VALUE"

| SQL> sel ect c.custonmer_nane, c.custoner_city, o.order_id,
0. order _val ue

fromcustonmers c, orders o
where o.custonmer_id = c.custoner_id
order by c.custoner_nane;

CUSTOVER_NAME CUSTOMER _CI TY ORDER |ID ORDER_VALUE

Aerospace Enterpris Scottsdal e 13 $3, 000, 000. 00
Aerospace Enterpris Scottsdal e 14 $1, 500, 000. 00
Chemi cal Constructi Joplin 11 $3, 000, 000. 00
Chemni cal Constructi Joplin 12 $7,500, 000. 00
Luxury Cars Inc. North Ridgeville 21 $6, 000, 000. 00
Luxury Cars Inc. North Ridgeville 20 $5, 000, 000. 00

1.4.2 Summarizing Data with the DISPLAY, COMPUTE, and BREAK Statements

Now that the query displays the rows it returns in a more acceptable format, you can
use DISPLAY, COMPUTE, and BREAK statementsto present order summaries for
each customer.

All three statements rely on a break specification to indicate to ISQL when it should
perform associated processing. There are four types of breaks you can specify:

» Column breaks are processed whenever the column associated with the break
changesin value

* Row breaks are processed after display of each row returned by the query

» Page breaks are processed at the end of each page (as defined by the SET PAGE-
SIZE statement)

* Report breaks are processed after display of al the rows returned by the query

While DISPLAY and COMPUTE statements specify what actions ISQL takes for a
particular type of break, the BREAK statement itself controls which type of break is

Dharma Sytems Inc

ISQL Reference

currently in effect. A conseguence of this behavior isthat DISPLAY and COMPUTE
statements don't take effect until you issue the BREAK statement with the correspond-
ing break specification.

Also, keep in mind that there can be only one type of break in effect at atime. This
means you can format a particular query for a single type of break.

In our example, we areinterested in acolumn break, since we want to display an order
summary for each customer. In particular, we want to display the name of the cus-
tomer along with the number and total value of orders for that customer. And, we
want this summary displayed whenever the value in the customer_name column
changes. In other words, we need to specify a column break on the customer_name
column.

Approach thistask in two steps. First, devise aDISPLAY statement to display the
customer name and confirm that it is displaying correctly. Then, issue COMPUTE
statements to calcul ate the statistics for each customer (namely, the count and sum of
orders), and add DISPLAY statement to include those statistics. All of the DISPLAY,
COMPUTE and BREAK statements have to specify the same break to get the desired
results.

The following example shows the DISPLAY and BREAK statements that display the
customer name. The COL clause in the DISPLAY statement indents the display
slightly to emphasize the change in presentation.

The following example uses the column formatting from previous examples. Notice
that the column formatting also affects DISPLAY statements that specify the same
column.

Example 1-4: Specifying Column Breaks and Values with DISPLAY

1 SQL> display col 5 "Summary of activity for", custoner_nanme on
cust oner _nane;

I SQL> break on customer_nane

I SQL> sel ect c.custonmer_nane, c.custoner_city, o.order_id,
0. order _val ue

fromcustomers c, orders o
where o.custonmer_id = c.custoner_id
order by c.custoner_nane;

CUSTOMER_NANVE CUSTOMER_CI TY ORDER_|I D ORDER_VALUE

Aerospace Enterpris Scottsdal e 13 $3, 000, 000. 00

Aerospace Enterpris Scottsdal e 14 $1, 500, 000. 00
Summary of activity for Aerospace Enterpris

Chemical Constructi Joplin 11 $3, 000, 000. 00

Cheni cal Constructi Joplin 12 $7, 500, 000. 00
Summary of activity for Chemical Constructi

Luxury Cars Inc. North Ridgeville 21 $6, 000, 000. 00

Luxury Cars Inc. North Ridgeville 20 $5, 000, 000. 00

Summary of activity for Luxury Cars Inc.

1-8

Dharma Sytems Inc

Introduction

Next, issue two COMPUTE statements to cal cul ate the desired summary values.

COMPUTE statements specify an SQL aggregate function (AVG MIN, MAX, SUM,
or COUNT), acolumn name, a variable name, and a break specification. 1SQL
applies the aggregate function to all values of the column for the set of rows that cor-
responds to the break specification. It storesthe result in the variable, which subse-
quent DISPLAY statements can use to display the result.

For this example, you need two separate compute statements. One calculates the
number of orders (COUNT OF the order_id column) and the other cal cul ates the total
cost of orders (SUM OF the order_value column). Both specify the same break,
namely, customer_name. The following example showsthe COMPUTE statements,
which store the resulting value in the variables num_orders and tot_value.

The following example also issuestwo more DISPLAY statements to display the vari-
ablevalues. Asbefore, the DISPLAY statements must specify the customer _name
break. They also indent their display farther to indicate the relationship with the pre-
viously issued DISPLAY.

As before, this example uses the COLUMN and DISPLAY statements from previous
examples. 1SQL processes DISPLAY statementsin the order they wereissued. Use
the DISPLAY statement, without any arguments, to show the current set of DISPLAY
statements in effect. Also, in the query results, notice that the column formatting
specified for the order_value column carries over to the tot_value variable, whichis
based on order_value.

Example 1-5: Calculating Statistics on Column Breaks with COMPUTE

1 SQL> conmpute count of order_id in numorders on custoner_nanme
I SQL> compute sum of order_value in tot_val ue on custoner_nanme

1 SQL> display col 10 "Total nunber of orders:", num.orders on
cust oner _nane;

1 SQL> display col 10 "Total value of orders:", tot_value on
cust oner _nane;

1SQL> display -- See all the DI SPLAY statements currently active

display col 5 "Summary of activity for" ,custoner_name on
cust oner _nane

di splay col 10 "Total nunber of orders:" ,numorders on
cust oner _nane

display col 10 "Total value of orders:" ,tot_value on customer_nane

| SQL> sel ect c.custonmer_nane, c.custoner_city, o.order_id,
0. order _val ue

fromcustomers c, orders o
where o.custonmer_id = c.custoner_id
order by c.custoner_nane;

CUSTOMER_NANME CUSTOMER_CI TY ORDER_|I D ORDER_VALUE
Aerospace Enterpris Scottsdal e 13 $3, 000, 000. 00
Aerospace Enterpris Scottsdal e 14 $1, 500, 000. 00

Summary of activity for Aerospace Enterpris
Tot al nunber of orders: 2
Total val ue of orders: $4, 500, 000. 00

Dharma Sytems Inc

| ISQL Reference

Chemni cal Constructi Joplin 11 $3, 000, 000. 00
Cheni cal Constructi Joplin 12 $7,500, 000. 00
Summary of activity for Chemical Constructi
Total nunber of orders: 2
Total value of orders: $10, 500, 000.00
Luxury Cars Inc. North Ridgeville 21 $6, 000, 000. 00
Luxury Cars Inc. North Ridgeville 20 $5, 000, 000. 00

Summary of activity for Luxury Cars Inc.
Tot al nunber of orders: 2
Total val ue of orders: $11, 000, 000.00

1.4.3 Adding Beginning and Concluding Titles with the TITLE Statement
You can add some finishing touches to the query display with the TITLE statement.

The TITLE statement lets you specify text that 1ISQL displays before (TITLE TOP) or
after (TITLE BOTTOM) the query results.

Thetitle can also be horizontally positioned by specifying the keywords LEFT, CEN-
TER, or RIGHT; or by specifying the actual column number corresponding to the
required positioning of thetitle. Use the SKIP clause to skip lines after atop title or
before a bottom title.

The following example uses two TITLE statements to display a query header and
footer.

Example 1-6: Specifying a Query Header and Footer with TITLE
1SQL> TI TLE TOP LEFT "Orders Summary" RI GHT " Sept enmber 29, 1998" SKIP

2;

| SQL> SHOW LI NESI ZE -- RIGHT alignment of TITLE is relative to this
val ue:

LINESIZE 1 78

| SQL> TI TLE BOTTOM CENTER "End of Orders Summary Report" SKIP 2;

I SQL> sel ect c.custoner_nane, c.custoner_city, o.order_id,
0. order _val ue

fromcustonmers c, orders o
where o.custonmer_id = c.custoner_id
order by c.custoner_nane;

O ders Summary Sept ember
29, 1998

CUSTOMER_NANME CUSTOMER_CI TY ORDER_|I D ORDER_VALUE
Aerospace Enterpris Scottsdal e 13 $3, 000, 000. 00
Aerospace Enterpris Scottsdal e 14 $1, 500, 000. 00

Summary of activity for Aerospace Enterpris
Total nunber of orders: 2

| 1-10 Dharma Sytems Inc

Introduction

Tot al val ue of orders: $4, 500, 000. 00

Chemical Constructi Joplin 11 $3, 000, 000. 00
Cheni cal Constructi Joplin 12 $7,500, 000. 00
Summary of activity for Chemical Constructi
Total nunber of orders: 2
Total value of orders: $10, 500, 000.00
Luxury Cars Inc. North Ridgeville 21 $6, 000, 000. 00
Luxury Cars Inc. North Ridgeville 20 $5, 000, 000. 00
Summary of activity for Luxury Cars Inc.
Total nunber of orders: 2

Total value of orders: $11, 000, 000.00

Tower Construction Minising 8 $2, 000, 000. 00

Tower Construction Minising 10 $6, 000, 000. 00
Tower Construction Minising 9 $8, 000, 000. 00
Summary of activity for Tower Construction
Total nunber of orders: 3

Total value of orders: $16, 000, 000.00

End of Orders Summary Report
23 records sel ected
| S@>

1.5 THE HELP AND TABLE STATEMENTS

ISQL supports an on-line help facility that can be invoked by using the HEL P gtate-
ment. Typing HELP at the ISQL prompt will display ahelp file which will list the
options accepted by the HEL P statement. The various forms of the HEL P statement
are listed below:

» HELP — Displays the options that can be specified for HELP.
+ HELP COMMANDS — Displays all the statements that | SQL accepts.

* HELP command_name — Displays help file corresponding to the specified state-
ment.

TABLE isan ISQL statement that displays all the tables present in the database
including any system tables. TABLE can be used also to display the description of a
single table by explicitly giving the table name. Both forms of the TABLE statement
are shown below:

TABLE;
TABLE t abl e_nane;

Dharma Sytems Inc

ISQL Reference

1.6 TRANSACTION SUPPORT

A transaction is started with the execution of the first SQL statement. A transactionis
committed using the COMMIT WORK statement and rolled back using the ROLL-
BACK WORK gtatement.

If the AUTOCOMMIT option is set to ON, then ISQL treats each SQL statement asa
single transaction. This prevents the user from holding locks on the database for an
extended period of time. Thisisvery critical when the user is querying an on-line
database in which a transaction processing application is executing in real time.

A set of SQL statements can be executed as part of atransaction and committed using
the COMMIT WORK statement. Thisis shown below:

<SQL. st at enent >

<SQL st at enent >

<SQL. st at enent >

COWM T WORK ;

Instead, a transaction can also be rolled back using the ROLLBACK WORK state-
ment as shown:

<SQL. st at enent >

<SQL st at enent >

<SQL. st at enent >

ROLLBACK WORK ;

An SQL statement starting immediately after a COMMIT WORK or ROLLBACK
WORK statement starts a new transaction.

1.7 ISQL REFERENCE
This section provides reference material for statements specific to ISQL.
This section does not include descriptions of standard SQL statements or statements
specific to embedded SQL. For details on the syntax and semantics of those other
SQL statements, see the Dharma SDK Reference Manual.

1.7.1 @ (Execute)

Syntax
@il enane

1-12 Dharma Sytems Inc

Introduction

Description

Arguments

Notes

Example

1.7.2 BREAK

Syntax

Description

Executes the SQL statements stored in the specified SQL script file. The statements
specified in the file are not added to the history buffer.

filename
The name of the script file.

The GET, START, and @ (execute) statements are similar in that they all read SQL
script files. Both GET and START read an SQL script file and append the first state-
ment in it to the history buffer. However, the START statement also executes the
script statement and accepts arguments that it substitutes for parameter referencesin
the script statement. The @ (execute) statement, on the other hand, executes all the
statements in an SQL script file but does not add any of the statements to the history
buffer. The @ statement does not support argument substitution.

The following example shows a simple ISQL script file.

Example 1-7: Sample ISQL script

connect to denodb;

set echo on ;

create table stores (itemno integer, itemname char(20));
insert into stores values (1001, chassis);

insert into stores values (1002, chips);

select * fromstores where itemno > 1001,

set echo off

To execute the above statements stored in a file named cmdfile, enter:

| SQL> @ndfile

BREAK [ON break_spec [SKIP n]]
break_spec::
{ colum_nane [, ...] | ROW| PAGE | REPORT }

The BREAK statement specifies at what point ISQL processes associated DISPLAY
and COMPUTE statements. DISPLAY and COMPUTE statements have no effect
until you issue a BREAK statement with the same break specification.

A break can be specified on any of the following events:

Dharma Sytems Inc

| ISQL Reference

» Changein the value of acolumn
* Selection of each row

* Endof apage

* Endof areport

Only one BREAK statement can bein effect at atime. When anew BREAK state-
ment is entered, it replaces the previous BREAK statement. The BREAK statement
can specify one or more columns on which the break can occur.

The BREAK statement without any clauses displays the currently-set break, if any.

Arguments
break_spec
The events that cause an SQL query to be interrupted and the execution of the associ-
ated COMPUTE and DISPLAY statements. break_spec can be any of the following
values:
column_name Causes a break when the value of the column specified
by column_name changes.
ROW Causes a break on every row selected by a SELECT
statement.
PAGE Causes a break at the end of each page. The end of a
page is specified in the SET PAGESIZE statement.
See section “1.7.18" on page 1-36 for details on the
SET statement.
REPORT Causes a break at the end of a report or query.
SKIPnN
The optional SKIP clause can be used to skip the specified number of lines when the
specified break occurs and before processing of any associated DISPLAY statements.
Examples

The following examplesillustrate how various break settings and corresponding DIS-
PLAY gtatements affect the display of the same query.

| SQL> break

no break specified

| SQL> sel ect custoner_nane from custoners; -- Default display
CUSTOVER_NANE

Sports Cars Inc.

M ghty Bul | dozer Inc.

Shi p Shapers Inc.

Tower Construction Inc.

Chemi cal Construction Inc.

| 1-14 Dharma Sytems Inc

Introduction

Aer ospace Enterprises Inc.
Medi cal Enterprises Inc.
Rai | Builders Inc.
Luxury Cars Inc.

Ofice Furniture Inc.
10 records sel ected

| SQL> -- Set DI SPLAY va

| SQL> di splay "Break on change in value of customer_nane!" on
cust oner _nane;

ues for different breaks:

| SQL> di splay "Break on every row " on row,

| SQL> di splay "Break on page (page size set to 2 lines)" on
page;

| SQL> di splay "Break on end of report!" on report;
| SQL> set pagesize 2

| SQL> break on custoner_nane

| SQL> sel ect custoner_nane from custoners;
CUSTOVER_NAME

Sports Cars Inc.

Break on change in val ue of custoner_nane!

M ghty Bul | dozer Inc.

Break on change in value of custoner_nane!

Shi p Shapers Inc.

Break on change in val ue of custoner_nane!

| SQL> break on row

| SQL> sel ect custoner_nane from custoners;
CUSTOVER_NANE

Sports Cars Inc.

Break on every row

M ghty Bul | dozer Inc.

Break on every row

Shi p Shapers Inc.

Break on every row

| SQL> break on page

Dharma Sytems Inc

ISQL Reference

| SQL> sel ect custoner_nane from custoners;
CUSTOVER_NAME

Break on page (page size set to 2 lines)
CUSTOVER_NAME

Sports Cars Inc.

Break on page (page size set to 2 lines)
CUSTOVER_NAME

M ghty Bul |l dozer Inc.

Break on page (page size set to 2 lines)

| SQL> break on report

| SQL> sel ect custoner_nane from custoners;
CUSTOVER_NAME

Sports Cars Inc.

M ghty Bul |l dozer Inc.

Shi p Shapers Inc.

Tower Construction Inc.
Chemi cal Construction Inc.
Aer ospace Enterprises Inc.
Medi cal Enterprises Inc.
Rai | Builders Inc.

Luxury Cars Inc.

O fice Furniture Inc.
Break on end of report!

10 records sel ected

| SQL>
1.7.3 CLEAR
Syntax
CLEAR option
option::
H STORY
| BREAK
| COLUWN
1-16 Dharma Sytems Inc

Introduction

Description

Argument

Examples

| COMPUTE
| DI SPLAY
| TITLE

The CLEAR statement removes settings made by the ISQL statement corresponding
to option.

option
Which ISQL statement's settings to clear:

* CLEARHISTORY — Clearsthe ISQL statement history buffer.
» CLEARBREAK — Clears the break set by the BREAK statement.

* CLEAR COLUMN — Clearsformatting options set by any COLUMN statements
in effect.

» CLEAR COMPUTE — Deletes clears all the options set by the COMPUTE state-
ment.

* CLEARDISPLAY — Clearsthe displays set by the DISPLAY statement.
» CLEARTITLE— Clearsthetitles set by the TITLE statement.

Thefollowing exampleillustrates clearing the DISPLAY and BREAK settings.

| SQL> DI SPLAY -- See the DI SPLAY settings currently in effect:

di splay "Break on change in value of custonmeer_nanme!" on
cust omer _nane

di splay "Break on every row" on row

di splay "Break on page (page size set to 2 lines)" on page
di splay "Break on end of report!" on report
| SQL> CLEAR DI SPLAY

| SQL> DI SPLAY

No di splay specified.

| SQL> BREAK

break on report skip O

| SQL> CLEAR BREAK

| SQL> BREAK

no break specified

| SQL>

Dharma Sytems Inc

ISQL Reference

1.7.4 COLUMN

Syntax

Description

Arguments

COLUMN [col umm_nane
[FORMAT " format _string "] | [HEADING " heading_ text "]]

The COLUMN statement controls how | SQL displays a column's values (the FOR-
MAT clause) and specifies aternative column-heading text (the HEADING clause).

The COLUMN statement without any arguments displays the current column specifi-
cations.

column_name

The name of the column affected by the COLUMN statement. If the COLUMN state-
ment includes column_name but omits both the FORMAT and HEADING clauses,
ISQL clears any formatting and headings in effect for that column. The formatting
specified for column_name also appliesto DISPLAY statements that specify the same
column.

FORMAT " format_string "
Specifies a quoted string that formats the display of column values. Valid values for
format strings depend on the data type of the column.

Character The only valid format string for character data types is of the form
"An", where n specifies the width of the column display. The A
character must be upper case.

Numeric “Table 1-3:“ on page 1-19 shows valid format strings for numeric
data types.

Date-time “Table 1-4:" on page 1-19 shows valid format strings for date-time
data types. The format strings consist of keywords that SQL inter-
prets and replaces with formatted values. Any other character in
the format string are displayed as literals. The format strings are
case sensitive. For instance, SQL replaces 'DAY' with all upper-
case letters, but follows the case of 'Day'. Note that the SQL scalar
function TO_CHAR offers comparable functionality and is not lim-
ited to SQL statements issued within ISQL. See the Dharma SDK
Reference Manual for details on TO_CHAR.

COLUMN format strings also affect display valuesin DISPLAY statements that spec-
ify the same column or a COMPUTE value based on the column.

HEADING " heading_text "
Specifies an alternative heading for the column display. The default is the column
name.

1-18

Dharma Sytems Inc

Introduction

Format String Details

Table 1-3: Numeric Format Strings for the COLUMN Statement

Character Example Description

9 99999 Number of 9's specifies width. If the column
value is too large to display in the specified
format, ISQL displays # characters in place
of the value.

0 09999 Display leading zeroes.

$ $9999 Prefix the display with '$'.

B B9999 Display blanks if the value is zero.

, 99,999 Display a comma at position specified by the
comma.

99,999.99 Display a decimal point at the specified posi-

tion.

Mi 99999MI Display '-' after a negative value.

PR 99999PR Display negative values between '<' and ">'.

Table 1-4: Date-Time Format Strings for the Column Statement

Character Description

CcC The century as a 2-digit number.

YYYY The year as a 4-digit number.

YYY The last 3 digits of the year.

YY The last 2 digits of the year.

Y The last digit of the year.

Y,YYY The year as a 4-digit number with a comma after the
first digit.

Q The quarter of the year as 1-digit number (with values 1,
2,3, 0r4).

MM The month value as 2-digit number (in the range 01-12).

MONTH The name of the month as a string of 9 characters

(JANUARY' to 'DECEMBER).

MON The first 3 characters of the name of the month (in the
range 'JAN' to 'DEC").

Ww The week of year as a 2-digit number (in the range 01-
52).

W The week of month as a 1-digit number (in the range 1-
5).

DDD The day of year as a 3-digit number (in the range 001-
365).

Dharma Sytems Inc

| ISQL Reference

Table 1-4: Date-Time Format Strings for the Column Statement

Character Description

CcC The century as a 2-digit number.

DD The day of month as a 2-digit number (in the range 01-
31).

D The day of week as a 1-digit number (in the range 1-7, 1

for Sunday and 7 for Saturday).

DAY The day of week as a 9 character string (in the range
'SUNDAY' to 'SATURDAY .

DY The day of week as a 3 character string (in the range
'SUN' to 'SAT").
J The Julian day (number of days since DEC 31, 1899) as

an 8 digit number.

TH When added to a format keyword that results in a num-
ber, this format keyword ('TH') is replaced by the string
'ST','ND', 'RD' or 'TH' depending on the last digit of the

number.
AMPM The string 'AM' or 'PM' depending on whether time cor-
responds to forenoon or afternoon.
A.M.P.M. The string 'A.M." or 'P.M." depending on whether time
corresponds to forenoon or afternoon.
HH12 The hour value as a 2-digit number (in the range 00 to
11).
HHHH24 The hour value as a 2-digit number (in the range 00 to
23).
MI The minute value as a 2-digit number (in the range 00 to
59).
SS The seconds value as a 2-digit number (in the range 00
to 59).
SSSSS The seconds from midnight as a 5-digit number (in the
range 00000 to 86399).
MLS The milliseconds value as a 3-digit number (in the range
000 to 999).
Examples
The following examples are based on a table, orders, with columns defined as fol-
lows:
| SQL> tabl e orders
COLNANME NULL ? TYPE LENGTH
order _id NOT NULL | NT 4
custoner _id | NT 4

| 1-20 Dharma Sytems Inc

Introduction

steel _type CHAR 20
order _info CHAR 200
order _wei ght I NT 4
order _val ue | NT 4
order _state CHAR 20

ISQL displaysthe order_info column, at 200 characters, with lots of blank space pre-
ceding the values:

| SQL> sel ect order_info fromorders where order_val ue < 1000000
ORDER_| NFO

Solid Rods 5 in. dianeter

1 record sel ected

You can improve formatting by using the character format string to limit the width of
the display:
| SQL> col utm ORDER I NFO format "A28" heading "Details"

| SQL> sel ect order_info fromorders where order_val ue <
1000000;

ORDER_| NFO
Solid Rods 5 in. dianeter
1 record sel ected

| SQ> -- Illustrate some options with numeric format strings.
| SQL> -- No colum formatting:
| SQL.> sel ect order _value fromorders where order_val ue <
1000000;

ORDER_VALUE

110000

1 record sel ected
| SQL> -- Format to display as noney, and use different heading:
| SQL.> col umm order_value format "$999, 999, 999. 99" headi ng

" Ampunt "

| SQL> sel ect order_value fromorders where order_value <
1000000;

Dharma Sytems Inc

ISQL Reference

$110, 000. 00
1 record sel ected
The following examples use the single-val ue system table, syscalctable, and the sys-
date scalar function, to illustrate some date-time formatting. The sysdate function
returns today's date.
| SQL> sel ect sysdate from syscalctable; -- No formatting
SYSDATE
05/ 07/ 1998
| SQL> col um sysdate format " Day"
| SQL> sel ect sysdate from syscal ctable
SYSDATE

Thur sday

1 record sel ected
| SQL> col um sysdate format "Month"
| SQL> sel ect sysdate from syscal ctable
SYSDATE

May
1 record sel ected
| SQL> col um sysdate format "DDth"
| SQL> sel ect sysdate from syscal ctable

SYSDATE
7th
1 record sel ected
Note: If the select-list of aquery includes column titles, they override format-
ting specified in COLUMN statements for those columns. The following
exampleillustrates this behavior.
| SQL> select fld fromsyscalctable; -- No formatting
FLD
100

1 record sel ected

| SQ.> colum fld heading "colum title" -- Specify heading in
COLUMN st at enent

| SQL> select fld from syscal ctabl e;
COLUMN TI TLE

1-22

Dharma Sytems Inc

Introduction

1 record sel ected

| SQL> select fld "newtitle" fromsyscalctable; -- Specify

title in select |ist
NEW TI TLE
100

1 record sel ected

1.7.5 COMPUTE
Syntax
COVPUTE
[{ AVG| MAX| MN| SUM| COUNT }
OF col umm_nane
I N vari abl e_nane
ON break_spec]
break_spec::
{ colum_nane | RON| PAGE | REPORT }
Description
Performs aggregate function computations on column values for the specified set of
rows, and assigns the results to avariable. DISPLAY statements can then refer to the
variable to display itsvalue.
COMPUTE statements have no effect until you issue a BREAK statement with the
same break_spec.
Issuing the COMPUTE statement without any arguments displays the currently-set
COMPUTE specifications, if any.
Arguments

AVG | MAX | MIN | SUM | COUNT

The function to apply to values of column_name. Thefunctions AVG, MAX, MIN,
and SUM can be used only when the column isnumeric. Thefunction COUNT can be
used for any column type.

column_name

The column whose value is to be computed. The column specified in column_name
must also be included in the select list of the query. If column_name is not also
included in the select list, it has no effect.

variable name

Specifiesthe name of the variable where the computed valueis stored. 1SQL issuesan
implicit DEFINE statement for variable_name and assigns the variable a value of
zero. During query processing, the value of variable_name changes as |SQL encoun-
ters the specified breaks.

Dharma Sytems Inc

ISQL Reference

Examples

1.7.6 DEFINE

Syntax

Description

break_spec

Specifies the set of rows after which 1SQL processes the COMPUTE statement. A
COMPUTE statement has no effect until you issue a corresponding BREAK state-
ment. See the description of the BREAK statement on page 1-13 for details.

The following example computes the number of items ordered by each customer.

| SQL> break on custoner_nane

| SQL> display col 5 "Nunber of orders placed by",
custoner_name, "=", n_ord on custoner_nane

| SQL> conpute count of order_id in n_ord on custoner_naneg;

| SQL> sel ect c.custonmer_name, o.order _id fromcustoners c,
orders o

where o.custoner _id = c.custoner _id;
CUSTOVER_NAME ORDER | D
Sports Cars Inc.
Sports Cars Inc.
Nunber of orders placed by Sports Cars Inc.
= 2
M ghty Bul | dozer I nc. 3
M ghty Bul | dozer I nc.
Nunmber of orders placed by M ghty Bul | dozer | nc.
= 2

DEFI NE [variabl e_nane = val ue]

The DEFINE gtatement defines a variable and assigns an ASCI|I string value to it.
When you refer to the defined variable in DISPLAY statements, | SQL prints the
value.

The DEFINE statement is useful if you have scripts with many DISPLAY statements.
You can change asingle DEFINE statement to change the valuein all of the DIS-
PLAY statements that refer to the variable.

Issuing the DEFINE statement without any arguments displays any currently-defined
variables, including those defined through the COMPUTE statement.

1-24

Dharma Sytems Inc

Introduction

Arguments

Example

1.7.7 DISPLAY

Syntax

Description

Arguments

variable name
Specifies the name by which the variable can be referred to.

value
The ASCII string that isassigned to the variable. Enclose valuein quotesif it contains
any non-numeric val ues.

The following example defines a variable called nestate and assigns the value NH to
it.
| SQL> DEFI NE nestate = "NH"

DI SPLAY { [col _position] display value } [, ...] ON break_spec

col _position::

{ COL colum_nunber | @ col unm_nane }
di spl ay_val ue::

{ "text string" | variable | columm_nane }
break_spec::

{ colum_name | RON| PAGE | REPORT }

The DISPLAY statement displays the specified text, variable value, and/or column
value after the set of rows specified by break_spec. DISPLAY statements have no
effect until you issue a BREAK statement with the same break_spec.

Issuing the DISPLAY statement without any arguments displays the currently-set
DISPLAY specifications, if any.

col_position
An optional argument that specifies the horizontal positioning of the associated dis-
play value. There are two formsfor the argument:

COL column_number Directly specifies the column position of the display
value as an integer(1 specifies column 1, 2 specifies
column 2, and so on.).

@column_name Names a column in the select list of the SQL query.
ISQL aligns the display value with the specified column.

Dharma Sytems Inc

ISQL Reference

If the DISPLAY statement omits col_position, ISQL positions the display value at
column 1.

display_value
The value to display when the associated break occurs:
"text string" If the display value is a text string, ISQL simply displays the text
string.
variable If the display value is a variable, ISQL displays the value of the vari-

able when the associated break occurs. The variable argument
refers to a variable named in a COMPUTE or DEFINE statement
that executes before the query. If variable is undefined, ISQL
ignores it.

column_name If the display value is a column name, ISQL displays the value of
the column when the associated break occurs. The column speci-
fied in column_name must also be included in the select list of the
query. If column_name is not also included in the select list, it has
no effect. If a COLUMN statement specifies a format for the same
column, the formatting also affects the DISPLAY statement.

break_spec

Specifies the set of rows after which 1SQL processesthe DISPLAY statement. A DIS-
PLAY statement has no effect until you issue acorresponding BREAK statement. See
the description of the BREAK statement on page 1-13 for details of break specifica
tions.

Examples
Thefollowing set of examples compute the number of orders placed by each customer
and displays the message Number of orders placed by, followed by the customer name
and the count of orders.
| SQL> break on custoner_nane
| SQL> display col 5 "Nunber of orders placed by",
custoner_name, "=", n_ord on custoner_nane
| SQL> conpute count of order_id in n_ord on custoner_naneg;
| SQL> sel ect c.custonmer_name, o.order_id fromcustoners c,
orders o
where o.custoner _id = c.custoner _id;
CUSTOVER_NAME ORDER I D
Sports Cars Inc.
Sports Cars Inc.
Nunber of orders placed by Sports Cars Inc.
= 2
M ghty Bul | dozer I nc. 3
M ghty Bul | dozer I nc. 4
Nurmber of orders placed by M ghty Bul | dozer | nc.
1-26 Dharma Sytems Inc

Introduction

1.7.8 EDIT
Syntax
Description

= 2

Shi p Shapers Inc.

Shi p Shapers Inc.

Shi p Shapers Inc.
Nunber of orders pl aced by Shi p Shapers I nc.

= 3
Tower Construction Inc.
Tower Construction Inc. 9
Tower Construction |nc. 10

Nunber of orders pl aced by Tower Construction Inc.
= 3

If the select-list of aquery includes column titles, they override DISPLAY statements
that include variable or column_name display values for those columns:

| SQL> display col 5 "test display. Sumof fldis",
| SQL> conpute sumof fld in tmp on fld;

| SQL> break on fld

| SQL>

tnp on fld;

select fld fromsyscalctable; -- This works:

FLD

100
test display. Sumof fld is 100
1 record sel ected

| SQL> select fld "colum title" fromsyscalctable; -- DI SPLAY

i s di sabl ed:
COLUWN TI TLE

100
1 record sel ected

E[DIT] [stmt_num;

The EDIT statement invokes a text editor to edit the specified statement from the
statement history buffer. If the statement number is not specified, the last statement in
the history buffer is edited. When you exit the editor, ISQL writes the buffer contents
asthe last statement in the history buffer.

By default, ISQL invokesthe vi editor on UNIX and the MS-DOS editor on NT. You
can change the default by setting the EDITOR environment variable:

Dharma Sytems Inc

ISQL Reference

* OnUNIX, set the environment variable at the operating system command level:

setenv EDI TOR /usr/ Il ocal /bin/gmacs

* On NT, set the environment variable in theinitialization file DHSQL.INI in the
windows directory:

EDI TOR = c:\nsoffice\w nword. exe

Examples
The following example uses the ! (shell) command to show the currently-set value of
the EDITOR environment variable in the UNIX environment (it showsthat it is set to
invoke the GNU emacs editor). Then, the example usesthe EDIT command to read in
the fifth statement in the history buffer into an editing buffer.
| SQ> ! printenv EDI TOR
/usr/ 1l ocal /bin/gmacs
| SQL> EDI T 5;
The foll owi ng exanple edits the |last statenent in the history
buf fer:
| SQL> select * fromsystable; -- bad table nane!
error(-20005): Tabl e/ Vi ew Synonym not found
ISQL> EDIT -- invoke an editor to correct the error
ISQL> list — corrected statenent is now the current statenent:
sel ect * from systabl es
| SQL> run -- run the corrected statenent

1.7.9 EXIT or QUIT

Syntax
EXIT

Description

The EXIT statement terminates the ISQL session.

Related Statements

QUIT and EXIT are synonymous. Thereisno differencein their effect.

1-28

Dharma Sytems Inc

Introduction

1.7.10 GET

Syntax

Description

Arguments

Notes

Example

G ET] fil ename;

The GET statement reads the first SQL statement stored in the specified script file.

filename

The name of the script file. 1SQL reads the file until it encounters a semicolon (;)
statement terminator. It appends the statement to the history buffer asthe most-recent
statement.

» Execute the statement read by GET using the RUN statement.

* TheGET, START, and @ (execute) statements are similar in that they all read
SQL script files. Both GET and START read an SQL script file and append the
first statement in it to the history buffer. However, the START statement al so
executes the script statement and accepts arguments that it substitutes for parame-
ter references in the script statement. The @ (execute) statement, on the other
hand, executes all the statementsin an SQL script file but does not add any of the
statements to the history buffer. The @ statement does not support argument sub-
stitution.

Once you refine a query to return the results you need, you can store it in an SQL
script file. For example, the file query.sgl contains a complex query that joins several
tables in a sample database.

Usethe GET and RUN statements to read and execute the first statement in query.sql:

| SQL> GET query. sql
SELECT cust oners. cust omer _nane,
orders. order_i nfo,
orders. order_state,
| ot _staging.lot_|ocation,
| ot _staging.start_date
FROM cust omer s,

orders,
lots,
| ot _staging
WHERE (custoners.custoner_id = orders.custoner_id) and
(lots.lot_id = lot_staging.lot_id) and
orders.order_id = lots.order_id) and
(custoners.custoner_nane = 'Ship Shapers Inc.') AND

lot_staging.start_date is not NULL) AND

(
(
(
(lot_staging.end_date is NULL))

| SQL> RUN

Dharma Sytems Inc

ISQL Reference

1.7.11 HELP

SELECT cust oners. cust omer _nane,
orders. order_i nfo,
orders. order_state,
| ot _staging.lot_|ocation,
| ot _staging.start_date

FROM cust omer s,

orders,
lots,
| ot _staging
WHERE (custoners.custoner_id = orders.custoner_id) and
(lots.lot_id = lot_staging.lot_id) and
(orders.order_id = lots.order_id) and
((custoners.custoner_nane = 'Ship Shapers Inc.') AND
(lot_staging.start_date is not NULL) AND
(lot_staging.end _date is NULL))
CUSTOVER_NAME ORDER_| NFO
ORDER_STATE LOT_LOCATI ON START_DATE
Shi p Shapers | nc. | Beans Size 10
Processi ng Hot Rol I'i ng 12/ 26/ 1994

1 record sel ected

Syntax
HE[LP] { COMMANDS| CLAUSES} ;
HE[LP] ;
Description
The HEL P statement displays the help information for the specified statement or
clause.
Notes
+ HELP COMMANDS displaysalist of statements for which help text is available.
» HELPCLAUSESdisplay alist of clauses for which help text is available.
» HELP statement with no clauses display the help text for the HEL P statement.
1-30 Dharma Sytems Inc

Introduction

Example

1.7.12 HISTORY

Syntax

Description

Notes

Example

The following HEL P statement will give a brief description of the SELECT statement.
| SQL.> HELP SELECT;

HI [STORY] ;

The HISTORY statement lists the statements in the statement history buffer, along
with an identifying number.

* ISQL maintainsalist of statements typed by the user in the statement history
buffer. The SET HISTORY statement sets the size of the history buffer.

* Thestatements LIST, EDIT, HISTORY, and RUN are not added to the history
buffer.

* UseHISTORY to obtain the statement number for a particular statement in the
history buffer that you want to execute. Then, use the RUN statement with the
statement number as an argument to execute that statement. Or, use LIST state-
ment with the statement number as an argument to make the statement the current
statement, which can then be executed using RUN without an argument.

The following exampleillustrates usage of the HISTORY statement.

| SQL> HI STORY -- Display statenents in the history buffer
1 start start_ex.sql Ship
2 SELECT customer _nanme FROM custoners
VWHERE cust onmer _nanme LI KE ' Shi p%
3 select tbl fromsystables where thltype ='T
SQL> RUN 2 -- Run the query corresponding to statenment 2
SELECT cust omer _name FROM cust oners
VWHERE cust onmer _nane LI KE ' Shi p%
CUSTOVER_NAME
Shi p Shapers Inc.
1 record sel ected

ISQL> H -- In addition to executing, statement 2 is now the
current statement

1 start start_ex.sql Ship
2 SELECT customer _nanme FROM custoners

Dharma Sytems Inc

ISQL Reference

VWHERE cust onmer _nanme LI KE ' Shi p%

3 select tbl fromsystables where thltype ='T
SELECT cust omer _nanme FROM cust oners
VWHERE cust onmer _nanme LI KE ' Shi p%

| SQL> LI ST 3 — Display statement 3 and copy it to the end of the
history Iist

select tbl from systables where tbltype ="'T
| SQL> history -- Statement 3 is now also the current statement
1 start start_ex.sql Ship
2 SELECT cust omer _nanme FROM custoners
VWHERE cust onmer _nanme LI KE ' Shi p%

3 select tbl fromsystables where thltype ='T
SELECT cust omer _nanme FROM cust oners
VWHERE cust onmer _nanme LI KE ' Shi p%

5 select tbl fromsystables where thltype ='T

1.7.13 HOST or SH or !

Syntax
{ HOST | SH | ! } [host_comrand];

Description
The HOST statement executes a host operating system command without terminating
the current ISQL session.

Arguments
HOST | SH |!
Synonyms for directing ISQL to execute an operating system command.
host_command
The operating system command to execute. If host_command is not specified, |SQL
spawns a subshell from which you can issue multiple operating system commands.
Use the exit command to return to the ISQL> prompt.

Example
Consider afilein the local directory named query.sgl. It contains a complex query
that joins several tables in asample database. From within ISQL You can display the
contents of the file with the ISQL ! (shell) statement:
| SQL> -- Check the syntax for the UNI X 'nore' command:
| SQL> host nore
Usage: nore [-dfln] [+l inenum | +/pattern] namel nane2 ...
| SQL> -- Use 'nmore' to display the query.sql script file:
| SQ> ! nore query. sql

1-32 Dharma Sytems Inc

Introduction

1.7.14 LIST

Syntax

Description

Example

SELECT cust omers. cust oner _nane,
orders. order _info,
orders. order_state,
| ot _staging.lot_I|ocation,
| ot _staging.start_date

FROM cust oner s,
orders,
| ots,
| ot _staging
WHERE (custoners.custoner_id = orders.custoner_id) and
(lots.lot_id = lot_staging.lot_id) and
(orders.order_id = lots.order_id) and
((customers.customer_nane = 'Ship Shapers Inc.') AND

(lot_staging.start_date is not NULL) AND
(lot_staging.end date is NULL))

| SQL> -- Spawn a subshell process to issue nultiple OS conmands:

| SQL> sh

L[IST] [stmt_num];

The LIST statement displays the statement with the specified statement number from
the statement history buffer and makesit the current statement by adding it to the end
of the history list.

If LIST omits stmt_num, it displays the last statement in the history buffer.

Thefollowing example uses the LIST statement to display the 5th statement in the his-
tory buffer (select customer_name from customers) and copy it to the end of the his-
tory list. It then executes the now-current statement using the RUN statement:

| SQL> history
1 title
2 title top "fred" skip 5
3 title
4 help title
5 select custonmer_nanme from custoners

Dharma Sytems Inc

| ISQL Reference

6 display "Display on page break!"
7 display "Test page break display" on page
8 select custonmer_nanme from custoners
9 select custonmer_nanme from custoners
10 clear title
ISQL> list 5
sel ect customer_nane from custoners
I SQL> run

sel ect custoner _nane from custoners
CUSTOVER_NAME

Sports Cars Inc.

M ghty Bul | dozer Inc.

Shi p Shapers Inc.

Tower Construction Inc.
Chemi cal Construction Inc.
Aer ospace Enterprises Inc.
Medi cal Enterprises Inc.
Rai | Builders Inc.

Luxury Cars Inc.

Ofice Furniture Inc.

10 records sel ected

| SQL>
1.7.15 QUIT or EXIT
Syntax

QquTl
Description

The QUIT statement terminates the current ISQL session.

Related Statements

QUIT and EXIT are synonymous. Thereisno differencein their effect.
1.7.16 RUN

Syntax
RIUN] [stnmt_nun;

| 1-34 Dharma Sytems Inc

Introduction

Description

Example

1.7.17 SAVE

Syntax

The RUN statement executes the statement with the specified statement number from
the statement history buffer and makesit the current statement by adding it to the end
of the history list.

If LIST omits stmt_num, it runs the current statement.

The following example runs the fifth statement in the history buffer.

| SQL> HI STORY

1

o O~ WD

7

title

title top "TEST TITLE" skip 5

title

help title

sel ect customer_name from custoners

di splay "Di splay on page break!"

di spl ay "Test page break di splay" on page

| SQL> RUN 5
sel ect custoner_nane from custoners
CUSTOVER_NAME

Sports Cars Inc.

M ghty Bul | dozer Inc.

Shi p Shapers Inc.

Tower Construction Inc.

Chem ca

Construction Inc.

Aer ospace Enterprises Inc.

Medi cal

Enterprises Inc.

Rai | Buil ders Inc.
Luxury Cars Inc.

Ofice Furniture Inc.

10 records sel ected

| SQL>

S[AVE] fil enane;

Dharma Sytems Inc

ISQL Reference

Description
The SAVE statement saves the last statement in the history buffer in filename. The
GET and START statements can then be used to read and execute the statement from
afile.
If filename does not exist, ISQL createsit. If filename does exist, ISQL overwrites it
with the contents of the last statement in the history buffer.
Example
I SQL> ! nore test.SQ
test.sql: No such file or directory
| SQL> sel ect custoner_nane, customer_city from customners;
CUSTOVER _NAME CUSTOVER _CI TY
Sports Cars I nc. Sewi ckl ey
M ghty Bul | dozer | nc. Bal dwi n Par k
Shi p Shapers Inc. Sout h M ami
Tower Construction Inc. Muni si ng
Chem cal Construction Inc. Joplin
Aer ospace Enterprises |Inc. Scottsdal e
Medi cal Enterprises Inc. Denver
Rai | Buil ders Inc. Cl aynont
| SQ.> save test.sql
ISQ>"! |Is -al test.sql
-rwr--r-- 1 dharma 51 May 1 18:21 test.sql
| SQL> ! nore test. sql
sel ect custonmer_nane, customer_city from custoners
| SQL>
1.7.18 SET
Syntax
SET set_option ;
set_option ::
HI STORY nunber statenents
| PAGESI ZE nunber _| i nes
| LI NESI ZE nunber _characters
| COMWAND LI NES nunber_lines
1-36 Dharma Sytems Inc

Introduction

Description

Arguments

| REPORT { ON | OFF }

| ECHO { ON | OFF }

| PAUSE { ON | OFF }

| TIME { ON| OFF }

| DI SPLAY COST { ON | OFF }

| AUTOCCOM T { ON | OFF }

| TRANSACTI ON | SOLATI ON LEVEL i sol ation_I evel
| CONNECTI ON { dat abase_name | DEFAULT }

The SET statement changes various characteristics of an interactive SQL session.

HISTORY
Sets the number of statements that 1SQL will store in the history buffer. The default,
and maximum, is 250 statements.

PAGESIZE number_lines

Sets the number of lines per page. The default is 72 lines. After each number_lines
lines, ISQL executes any DISPLAY ON PAGE statementsin effect and re-displays
column headings. The PAGESIZE setting affects both standard output and the file
opened through the SPOOL statement.

LINESIZE
Sets the number of characters per line. The default is 78 characters. The LINESIZE
setting affects both standard output and the file opened through the SPOOL statement.

COMMAND LINES
Sets the number of lines to be displayed. The default is 20.

REPORT ON | OFF

SET REPORT ON copies only the results of SQL statements to the file opened by the
SPOOL filename ON statement. SET REPORT OFF copies both the SQL statement
and the results to the file. SET REPORT OFF is the defaullt.

ECHO ON | OFF

SET ECHO ON displays SQL statements as well as resultsto standard output. SET
ECHO OFF suppresses the display of SQL statements, so that only results are dis-
played. SET ECHO OFF isthe default.

PAUSE ON | OFF
SET PAUSE ON prompts the user after displaying one page of results on the screen.
SET PAUSE ON isthe defaullt.

TIME ON | OFF
SET TIME ON displaysthe timetaken for executing a database query statement. SET
TIME OFF disables the display and is the defaullt.

Dharma Sytems Inc

ISQL Reference

Notes

Examples

DISPLAY COST ON | OFF
SET DISPLAY COST ON displays the values the Dharma SDK optimizer uses to
calculate the least-costly query strategy for a particular SQL statement.

The UPDATE STATISTICS statement updates the values displayed by SET DIS-
PLAY COST ON. SET DISPLAY COST OFF suppresses the display and isthe
default.

AUTOCOMMIT ON | OFF

SET AUTOCOMMIT ON commits changes and starts a new transaction immediately
after each SQL statement is executed. SET AUTOCOMMIT ON isthe default. SET
AUTOCOMMIT OFF requires that you end transactions explicitly witha COMMIT
or ROLLBACK WORK statement.

TRANSACTION ISOLATION LEVEL isolation_leve

Specifiestheisolation level. Isolation levels specify the degree to which one transac-
tion can modify dataor database objects being used by another concurrent transaction.
Seethe SET TRANSACTION ISOLATION LEVEL statement in the Dharma SDK
Reference Manual for more information on isolation levels.

CONNECTION { database name | DEFAULT}

Sets the active connection to database name or to the default connection. See the
description of the CONNECT statement in the Dharma SDK Reference Manual for
details on connections.

SET REPORT and SET ECHO are similar:

» SET REPORT affects the SPOOL file only, and ON suppresses statement display
e SET ECHO affects standard output only, and OFF suppresses statement display
Other statements control other characteristics of an interactive SQL session:

» Theeditor invoked by the EDIT statement is controlled by the value of the envi-
ronment variable EDITOR.

» Thefileto which interactive SQL writes output is controlled by the SPOOL file-
name ON statement.

| SQL> -- Illustrate PAGESIZE

| SQL> DI SPLAY "Here's a page break!" ON PAGE
| SQL> SET PAGESI ZE 4

| SQL> BREAK ON PAGE;

| SQL> SELECT TBL FROM SYSTABLES;

TBL

sys_chk_constrs

Here's a page break!

1-38

Dharma Sytems Inc

Introduction

1719 SHOW

Syntax

TBL

sys_chkcol _usage

sys_keycol _usage
Here's a page break!

| SQL> SET DI SPLAY COST ON
Sel ect fromthe one-record SYSCALCTABLE t abl e:
| SQL> SELECT * FROM SYSCALCTABLE;

| SQL> --

Esti mat ed Cost Val ues :

CosT 8080
CARDI NALI TY : 200
TREE SI ZE : 3072
FLD
100

SHOW [show_option | SPOOL] ;

show_option ::

HISTORY
PAGESIZE
LINESIZE
COMMAND LINES
REPORT
ECHO
PAUSE
TIME
DISPLAY COST
AUTOCOMMIT
TRANSACTION ISOLATION LEVEL

Dharma Sytems Inc

ISQL Reference

Description

Example

1.7.20 SPOOL

| CONNECTION

The SHOW statement displays the values of the various settings controlled by corre-
sponding SET and SPOOL statements. |f the SHOW statement omits show_option, it
displays all the ISQL settings currently in effect.

Seethe SET (page 1-36), SPOOL (page 1-40), and EDIT (page 1-27) statements for
details on the settings displayed by the SHOW statement.

| SQL> SHOW
I SQL ENVI RONMENT
EDITOR e Do
H STORY buffer size : 50 PAUSE : ON
COMVAND LINES ;10 TI MEi ng command execution ... : OFF
SPOOLIiNG ON LINESIZE, : 78
REPORTi ng Facility ON PAGESIZEcooi.n. 272
Spool File spool _file
AUTOCOMWM To . OFF ECHO commands : ON
TRANSACTI ON | SOLATI ON LEVEL .. : 0 (Snapshot)
DATABASE CONNECTI ONS
DATABASE CONNECTI ON NAME |'S DEFAULT ? I'S CURRENT ?
sal esdb conn_1 No Yes

Syntax
SPOCOL fil enane [ON|
SPOOL CFF ;
SPOOL QUT ;
Description
The SPOOL statement writes output from interactive SQL statements to the specified
file.
Arguments
filename ON
Opensthefile specified by filename and writes the displayed output into that file. The
filename cannot include punctuation marks such asaperiod (.) or comma,).
1-40 Dharma Sytems Inc

Introduction

Example

1.7.21 START

Syntax

Description

Arguments

Notes

OFF
Closes the file opened by the SPOOL ON statement.

ouT

Closes the file opened by the SPOOL ON statement and prints the file. The SPOOL
OUT statement passes the file to the system utility statement pr and the output is piped
tolpr.

To record the displayed output into the file called STK, enter:
| SQL> SPOOL STK ON ;

| SQ.> SELECT * FROM cust oner

| SQL> SPOOL OFF ;

ST[ART] filename [argunent] [...]

The START statement executes the first SQL statement stored in the specified script
file.

filename
The name of the script file. 1SQL reads the file until it encounters a semicolon (;)
statement terminator.

argument ...

ISQL substitutes the value of argument for parameter references in the script. Param-
eter referencesin a script are of the form &n, wherenisan integer. 1SQL replaces all
occurrences of &1 in the script with the first argument value, all occurrences of &2
with the second argument value, and so on. The value of argument must not contain
spaces or other specia characters.

» Inaddition to executing the first statement in the script file, the START statement
appends the statement (after any argument substitution) to the history buffer.

* TheGET, START, and @ (execute) statements are similar in that they all read
SQL script files. Both GET and START read an SQL script file and append the
first statement in it to the history buffer. However, the START statement al so
executes the script statement and accepts arguments that it substitutes for parame-
ter references in the script statement. The @ (execute) statement, on the other

Dharma Sytems Inc

ISQL Reference

Example

1.7.22 TABLE

hand, executes all the statements in an SQL script file but does not add any of the
statements to the history buffer. The @ statement does not support argument sub-
stitution.

ISQ@> -- Nothing in history buffer:
I SQL> history
H story queue is enpty.

ISQ> -- Display a script file with the ! shell statement. The
script's SQ 1SQ> -- statement uses the LIKE predicate to retrieve
cust onmer names

I SQL> -- beginning with the string passed as an argunment in a START
st at enent :

ISQ@> ! nore start_ex.sql
SELECT cust omer _nane FROM cust omer s
WHERE custoner_nanme LIKE '&1% ;

ISQL> -- Use the START statenment to execute the SQ statenent in the
scri pt

ISQL> -- start_ex.sql. Supply the value 'Ship' as a substitution argu-
nment :

| SQL> START start_ex.sql Ship
CUSTOVER_NAME

Ship Shapers Inc.

1 record sel ected

ISQ> -- ISQ puts the script statement, after argunent substitution,
IS@> -- in the history buffer:
I SQL> history

1 ! nore start_ex. sql

3 START start_ex.sqgl Ship
4 SELECT custoner_nanme FROM custoners
VWHERE cust oner _nane LI KE ' Shi p%

Syntax
T[ABLE] [tablenane] ;
Description
The TABLE statement with no argument displays alist of all the user tablesin the
database that are owned by the current user.
With the tablename argument, the TABL E statement displays a brief description of the
columns in the specified table.
Examples
You can use the TABLE statement to see the structure of system tables. Unless you
arelogged in as the Dharma database administrator (the user dharma, by default), you
1-42 Dharma Sytems Inc

Introduction

need to qualify the system table name with the administrator user name, asin the fol-
lowing example:

1 SQL> tabl e dharnma. syst abl es

COLNAME NULL ? TYPE LENGTH
id NOT NULL I NT 4
t bl NOT NULL VARCHAR 32
creator NOT NULL VARCHAR 32
owner NOT NULL VARCHAR 32
tbltype NOT NULL VARCHAR 1
tbl pctfree NOT NULL I NT 4
segi d NOT NULL I NT 4
has_pcnstrs NOT NULL VARCHAR 1
has_fcnstrs NOT NULL VARCHAR 1
has_ccnstrs NOT NULL VARCHAR 1
has_ucnstrs NOT NULL VARCHAR 1
tbl _status NOT NULL VARCHAR 1
rssid NOT NULL I NT 4

The following example uses the table command to detail the structure of the tables
used in examples throughout this chapter.

I1SQL> table - List the sanple tables

TABLENAVME

cust oner s

| ot _staging

lots

orders

quality

sanpl es

1 SQL> table custoners

COLNAME NULL ? TYPE LENGTH
customer_id NOT NULL I NT 4
cust omer _nane CHAR 50
cust omer _street CHAR 100
custoner_city CHAR 50
custoner_state CHAR 10
cust omer _zi p CHAR 5
1 SQL> table orders

COLNAME NULL ? TYPE LENGTH
order_id NOT NULL I NT 4
customer_id I NT 4
steel _type CHAR 20
order_info CHAR 200

Dharma Sytems Inc

| ISQL Reference

or der _wei ght I NT 4
order_val ue I NT 4
order_state CHAR 20
1SQL> table lots
COLNAME NULL ? TYPE LENGTH
lot_id NOT NULL I NT 4
order_id NOT NULL I NT 4
lot_units I NT 4
lot_info CHAR 200
| SQL> table | ot_stagi ng
COLNAME NULL ? TYPE LENGTH
lot _id I NT 4
I ot _l ocation CHAR 20
start_date DATE
end_date DATE
i ssues CHAR 200
1SQL> table quality
COLNAME NULL ? TYPE LENGTH
lot_id NOT NULL I NT 4
purity DOUBLE 8
p_devi ation DOUBLE 8
strength DOUBLE 8
s_devi ation DOUBLE 8
comment s CHAR 200
1 SQL> tabl e sanpl es
COLNAME NULL ? TYPE LENGTH
lot _id I NT 4
sanpl es I NT 4
comment s CHAR 200
| S@>

1.7.23 TITLE

Syntax
TITLE [

[TOP|BOTTOM]
[[LEFT |CENTER |RIGHT |[COL n] " text"][...]
[SKIPN]

I

| 1-44 Dharma Sytems Inc

Introduction

Description

Arguments

Examples

The TITLE statement specifies text that ISQL displays either before or after it pro-
cesses aquery. TITLE with no arguments displays the titles currently set, if any.

TOP |BOTTOM
Specifieswhether the titleisto be printed at the top or bottom of the page. The default
isTOPR

LEFT | CENTER |RIGHT |COL n

Specifies the horizontal alignment of the title text: LEFT aligns the text to the left of
the display; CENTER centers the text; RIGHT aligns the text to the right (with the
right-most character in the column specified by the SET LINESIZE statement). COL
n displays the text starting at the specified column (specifying COL 0 isthe same as
LEFT).

The default is LEFT.

text

The text to be displayed.

SKIPnN
Skipsthe specified number of lines after aTOP titleis printed and before aBOTTOM
titleis printed. By default, ISQL does not skip any lines.

Thefollowing example showsthe effect of specifying atop title without a bottom title,
then both a top and bottom title.

1SQ> TITLE "fred"
1 SQL> select * from syscalctable;
fred

FLD

100
1 record sel ected
1 SQL> TI TLE BOTTOM "fli nt st one"
1 SQL> select * from syscalctable;
fred
FLD

100
flintstone
1 record sel ected

The TI TLE statement can specify separate positions for different text
in the same title

1 SQL> CLEAR TI TLE

Dharma Sytems Inc

| ISQL Reference

I SQ> TI TLE TOP LEFT "Align on the left!" CENTER "Centered text" RI GHT
"Right aligned text!"

1 SQL> select * from syscalctabl e;

Align on the left! Centered text Ri ght aligned
text!

FLD

100

1 record sel ected

1-46 Dharma Sytems Inc

Symbols

@Execute syntax 1-12

A

Adding titles 1-10

B

Beginning titles 1-10

BREAK statement 1-4
BREAK statement syntax 1-13

C

CLEAR statement 1-4

CLEAR statement syntax 1-16

Column display formatting 1-6

COLUMN statement 1-4

COLUMN statement date-time formats 1-19
COLUMN statement numeric formats 1-19
COLUMN statement syntax 1-18
Commands file 2-3, 3-2

COMPUTE statement 1-4

COMPUTE statement syntax 1-23
Concluding titles 1-10

D

Data file formats for dbdump 3-2
Datafile formats for dbload 2-3
Data summaries 1-7
Date-time formats for COLUMN statement 1-19
dbdump
commands file 3-2
datafile formats 3-2
DEFINE RECORDS statement 3-3
examples 3-5
execution process diagram 3-1
fixed length records 3-2
FOR EACH statement 3-4
overview 3-1
prerequisites 3-1
syntax 3-1
variable length records 3-2
dbload
commands file 2-3
datafile formats 2-3
DEFINE RECORDS statement 2-4
errors 2-8
examples 2-6
execution process diagram 2-1
fixed length records 2-3
FOR EACH statement 2-5

Index

overview 2-1

prerequisites 2-2

syntax 2-2

variable length records 2-3
dbschema

examples 4-2

overview 4-1

syntax 4-1
DEFINE RECORDS statement 2-4, 3-3
DEFINE statement 1-4
DEFINE statement syntax 1-24
DISPLAY statement 1-4
DISPLAY statement syntax 1-25

E

EDIT statement 1-3
EDIT statement syntax 1-27
Errors
dbload 2-8
EXIT statement syntax 1-28

F

Fixed length records for dodump 3-2
Fixed length records for dbload 2-3
FOR EACH statement 2-5, 3-4
Formatting column displays 1-6
Formatting I SQL output 1-3

G

GET statement 1-3
GET statement syntax 1-29

H

HEL P statement syntax 1-30
HISTORY statement 1-3
HISTORY statement syntax 1-31
HOST statement syntax 1-32

|
1SQL
definition 1-1
output formats 1-3
reference 1-12
starting 1-1
statements for query formatting 1-4
syntax 1-2
usage 1-1
L

LIST statement 1-3
LIST statement syntax 1-33

Index-xlvii

Load records using dbload 2-1
N
Numeric formats for COLUMN statement 1-19

@)
Output formats 1-3

Q

Queries, unformatted 1-5
QUIT statement syntax 1-28

R

Recreste database elements and data using dboschema 4-1
Referencesfor ISQL 1-12

RUN statement 1-3

RUN statement syntax 1-34

S

SAVE statement 1-3
SAVE statement syntax 1-35
SET ECHO statement 1-4
SET LINESIZE statement 1-4
SET PAGESIZE statement 1-4
SET REPORT statement 1-4
SET statement syntax 1-36
SHOW statement syntax 1-39
SPOOL statement syntax 1-40
START statement 1-3
START statement syntax 1-41
Starting ISQL 1-1
Statement history support 1-2
ISQL statements 1-3
Statements
@EXECUTE syntax 1-12
BREAK 1-4,1-7, 1-13
BREAK syntax 1-13
CLEAR 1-4, 1-16
CLEAR syntax 1-16
COLUMN 1-4, 1-6, 1-18
COLUMN date-time formats 1-19
COLUMN numeric formats 1-19
COLUMN syntax 1-18
COMPUTE 1-4, 1-7, 1-23
COMPUTE syntax 1-23
DEFINE 1-4, 1-24
DEFINE RECORD 2-4, 3-3
DEFINE syntax 1-24
DISPLAY 1-4, 1-7, 1-25
DISPLAY syntax 1-25
EDIT 1-3, 1-27
EDIT syntax 1-27
EXIT 1-28
EXIT syntax 1-28
FOR EACH 2-5, 3-4
GET 1-3, 1-29
GET syntax 1-29

Index-xlviii

HELP 1-11, 1-30
HELP syntax 1-30
HISTORY 1-3, 1-31
HISTORY syntax 1-31
HOST 1-32
HOST syntax 1-32
LIsT 1-3, 1-33
LIST syntax 1-33
QUIT 1-28
QUIT syntax 1-28
RUN 1-3, 1-34
RUN syntax 1-34
SAVE 1-3, 1-35
SAVE syntax 1-35
SET 1-36
SET ECHO 1-4
SET LINESZIE 1-4
SET PAGESZIE 1-4
SET REPORT 1-4
SET syntax 1-36
sHow 1-39
SHOW syntax 1-39
spooL 1-40
SPOOL syntax 1-40
START 1-3, 1-41
START syntax 1-41
TABLE 1-11, 1-42
TABLE syntax 1-42
TITLE 1-4, 1-44
TITLE syntax 1-44
TITLES 1-10
Statements for query formatting 1-4
Summarizing data 1-7
Syntax for ISQL 1-2
T

TABLE statement syntax 1-42
TITLE statement 1-4
TITLE statement syntax 1-44
Titles
adding 1-10
beginning 1-10
concluding 1-10
Transaction support 1-12

)
Unformatted queries 1-5

V

Variable length records for dodump 3-2
Variable length records for dbload 2-3

W
Write to a database using dbload 3-1

	ISQL Reference Manual
	Introduction
	Purpose of This Guide
	Audience
	Syntax Diagram Conventions
	Related Documentation

	Chapter 1
	Introduction
	1.1 Overview
	1.2 Starting Interactive SQL
	1.3 Statement History Support
	1.4 Formatting Output of ISQL Queries
	1.4.1 Formatting Column Display with the COLUMN Statement
	1.4.2 Summarizing Data with the DISPLAY, COMPUTE, and BREAK Statements
	1.4.3 Adding Beginning and Concluding Titles with the TITLE Statement

	1.5 The HELP and TABLE Statements
	1.6 Transaction Support
	1.7 ISQL Reference
	1.7.1 @ (Execute)
	1.7.2 BREAK
	1.7.3 CLEAR
	1.7.4 COLUMN
	1.7.5 COMPUTE
	1.7.6 DEFINE
	1.7.7 DISPLAY
	1.7.8 EDIT
	1.7.9 EXIT or QUIT
	1.7.10 GET
	1.7.11 HELP
	1.7.12 HISTORY
	1.7.13 HOST or SH or !
	1.7.14 LIST
	1.7.15 QUIT or EXIT
	1.7.16 RUN
	1.7.17 SAVE
	1.7.18 SET
	1.7.19 SHOW
	1.7.20 SPOOL
	1.7.21 START
	1.7.22 TABLE
	1.7.23 TITLE

