
User Guide

 July 2005

 Version 9.1

This manual describes the Dharma Software Development Kit (SDK). It describes implementing ODBC,
JDBC and .NET access to proprietary data and considerations for creating a release kit to distribute the
completed implementation.

July 2005

© 1987-2005 Dharma Systems, Inc. All rights reserved.

Information in this document is subject to change without notice.

Dharma Systems Inc. shall not be liable for any incidental, direct, special or consequential damages whatsoever arising
out of or relating to this material, even if Dharma Systems Inc. has been advised, knew or should have known of the
possibility of such damages.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The soft-
ware may be used or copied only in accordance with the terms of this agreement. It is against the law to copy this soft-
ware on magnetic tape, disk or any other medium for any purpose other than for backup or archival purposes.

This manual contains information protected by copyright. No part of this manual may be photocopied or reproduced in
any form without prior written consent from Dharma Systems Inc.

Use, duplication, or disclosure whatsoever by the Government shall be expressly subject to restrictions as set forth in
subdivision (b)(3)(ii) for restricted rights in computer software and subdivision (b)(2) for limited rights in technical
data, both as set in 52.227-7013.

Dharma Systems welcomes your comments on this document and the software it describes. Send comments to:

 Documentation Comments

 Dharma Systems, Inc.

 Brookline Business Center.

 #55, Route 13

 Brookline, NH 03033

 Phone: 603-732-4001

 Fax: 603-732-4003

 Electronic Mail: support@dharma.com

 Web Page: http://www.dharma.com

Dharma/SQL, Dharma AppLink, Dharma SDK, and Dharma Integrator are trademarks of Dharma Systems, Inc.

The following are third-party trademarks:

Microsoft is a registered trademark, and ODBC, Windows, Windows NT, Windows 95 and Windows 2000 are trade-
marks of Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation.

Java, Java Development Kit, Solaris, SPARC, SunOS, and SunSoft are registered trademarks of Sun Microsystems,
Inc.

All other trademarks and registered trademarks are the property of their respective holders.

Contents
 Introduction
 Purpose of This Manual . xv
 Audience. xv
 Structure . xv
 Conventions . xvi
 Related Documentation . xvi

 1 Introduction
1.1 Overview . 1-1
1.2 Client/Server and Desktop Configurations. 1-1

1.2.1 Client/Server Configuration. 1-1
1.2.2 Desktop configuration . 1-2

1.3 Storage Interfaces . 1-3
1.4 SQL Feature Support . 1-3
1.5 Benefits . 1-4
1.6 Implementing Access to Proprietary Data. 1-4

 2 Getting Started
2.1 Introduction . 2-1
2.2 Required Software . 2-1
2.3 Desktop . 2-3

2.3.1 Installing Development Components. 2-3
2.3.2 Renaming the Desktop Sample Implementation . 2-8

2.3.2.1 SDK for C stubs . 2-8
2.3.2.2 SDK for Java stubs . 2-9

2.3.3 Loading Metadata . 2-9
2.3.4 Adding Names of ODBC Data Sources. 2-10

2.4 Client/Server . 2-10
2.4.1 Installing Development Components. 2-11
2.4.2 Setting the TPEROOT Variable on the Server System . 2-17
2.4.3 Renaming the Client/Server Sample Implementation . 2-18

2.4.3.1 SDK for C stubs . 2-18
2.4.3.2 SDK for Java stubs . 2-18

2.4.4 Starting the dhdaemon Dharma SDK Server Process . 2-18
2.4.4.1 Edit the Services File to Add the sqlnw Service Name 2-19
2.4.4.2 UNIX Server Systems: Start the Dhdaemon Process . 2-19
2.4.4.3 Windows Server Systems: Start the Dhdaemon Service 2-19

2.4.5 Loading Metadata . 2-20
2.4.5.1 Creating the Data Dictionary with mdcreate . 2-20
2.4.5.2 Loading Metadata With isql . 2-20

2.5 Dharma SDK ODBC Driver. 2-21
2.5.1 Introduction . 2-21
2.5.2 Installing and Configuring the Dharma SDK ODBC Driver . 2-22

2.5.2.1 Installing the Dharma SDK ODBC Driver. 2-22
2.5.2.2 Editing Network Configuration Files . 2-22
2.5.2.3 Adding the ODBC Data Sources for the Dharma SDK Server 2-23
iii

2.5.2.4 Handling of Connection Information . 2-25
2.6 Dharma SDK JDBC Driver. 2-25

2.6.1 Installing the JDBC Driver . 2-25
2.7 Dharma SDK .NET Data Provider. 2-26

2.7.1 Introduction . 2-26
2.7.2 Required Software . 2-26
2.7.3 Installing from a Distribution Kit on any Client System. 2-26

 3 Implementation Strategy
3.1 Introduction . 3-1
3.2 Philosophy . 3-1

3.2.1 Two Common Proprietary Formats . 3-2
3.2.2 Mapping Proprietary Data to a Relational View . 3-2
3.2.3 Mapping Proprietary Access Methods to Relational Indexes 3-3
3.2.4 Developing an Algorithm for Accessing Data . 3-3

3.3 Stages of Implementation. 3-4
3.3.1 Stage 1: Metadata Access . 3-8

3.3.1.1 Creating md_script, the SQL Script to Load Metadata. 3-8
3.3.1.2 Initializing Connections to the Proprietary Storage System 3-9
3.3.1.3 Partially Implementing dhcs_add_table to Return Table Identifiers 3-10
3.3.1.4 Closing Connections With dhcs_rss_cleanup . 3-10
3.3.1.5 Testing Stage 1 Implementation . 3-10

3.3.2 Stage 2: Read Access. 3-11
3.3.2.1 Implementing the Tuple Identifier Interfaces . 3-13
3.3.2.2 Retrieving Data Through Table Scans . 3-14
3.3.2.3 Returning Implementation-Specific Error Messages . 3-14
3.3.2.4 Opening and Closing Tables . 3-15
3.3.2.5 Supplying Table Cardinality Data To The Optimizer. 3-15
3.3.2.6 Testing Stage 2 Implementation . 3-15

3.3.3 Stage 3: Indexed Access . 3-15
3.3.3.1 Responding to Index Property Information Calls . 3-17
3.3.3.2 Partially Implementing index creation to Return Index Identifiers 3-18
3.3.3.3 Retrieving Data Through Index Scans . 3-19
3.3.3.4 Supplying Index Selectivity Data to the Optimizer . 3-20
3.3.3.5 Testing Stage 3 Implementation . 3-20

3.3.4 Stage 4: Write Access . 3-20
3.3.4.1 Adding, Modifying, and Deleting Records. 3-23
3.3.4.2 Managing Transactions . 3-24
3.3.4.3 Testing Stage 4 Implementation . 3-25

3.3.5 Stage 5: Data Definition . 3-25
3.3.5.1 Testing Stage 5 Implementation . 3-25

3.3.6 Stage 6: Storage System Scalar Functions and Procedures . 3-26
3.3.7 Stage 7: Long Data Type Support . 3-28

3.3.7.1 Retrieving Long Data . 3-29
3.3.7.1.1 For C stubs. 3-29
3.3.7.1.2 For Java Stubs . 3-30

3.3.7.2 Storing Long Data. 3-30
3.3.7.2.1 For C stubs. 3-30
3.3.7.2.2 For Java stubs . 3-31

3.3.7.3 Creating Indexes on Long Data-Type Columns . 3-31
iv

3.3.7.4 Testing Stage 7 Implementation. 3-32
3.3.8 Stage 8: Dynamic Metadata Support . 3-32

3.3.8.1 Indicating Support for Dynamic Metadata . 3-33
3.3.8.2 Providing Detail on User Tables and Indexes . 3-33
3.3.8.3 Testing Stage 8 Implementation. 3-34

3.4 Building and Configuring the Dharma SDK Server . 3-34
3.4.1 Desktop . 3-35

3.4.1.1 Building the Desktop Dharma SDK DLL . 3-35
3.4.1.2 Creating and Loading the Data Dictionary. 3-35

3.4.2 Client/Server . 3-36
3.4.2.1 Stopping the dhdaemon Process. 3-36
3.4.2.2 Building the Client/Server Dharma SDK Server Executable. 3-37
3.4.2.3 Restarting the dhdaemon Service . 3-38
3.4.2.4 Creating the Data Dictionary . 3-38
3.4.2.5 Loading Metadata for the Proprietary Storage System 3-39

3.5 Setting Dharma SDK Runtime Variables . 3-40
3.5.1 Specifying the Main Dharma SDK Directory with TPEROOT. 3-40
3.5.2 Specifying Location of the Data Dictionary with TPE_DATADIR 3-40
3.5.3 Indicating Support for Dynamic Metadata with DH_DYNAMIC_METADATA . . . 3-41
3.5.4 Thread Safety of Dharma SDK ODBC Driver . 3-41
3.5.5 Controlling Log File Output with TPESQLDBG . 3-41
3.5.6 Setting Default Date Format With TPE_DFLT_DATE . 3-42
3.5.7 Controlling Interpretation of Years in Date Literals With DH_Y2K_CUTOFF 3-44

Example 3-15: . 3-46
 4 Creating a Release Kit for Distributing the Dharma SDK Server

4.1 Introduction . 4-1
4.2 Desktop . 4-1
4.3 Client/Server . 4-2
4.4 Providing jar file for SDK for Java . 4-3

 5 ‘C’ Stubs Storage Interface Reference
5.1 Common Data Structures. 5-1

5.1.1 Table Field Lists: dhcs_fld_list_t and dhcs_fld_desc_t. 5-1
5.1.1.1 dhcs_fld_list_t . 5-2
5.1.1.2 dhcs_desc_t. 5-2

5.1.2 Index Key Lists: dhcs_keydesc_t and dhcs_kfld_desc_t . 5-3
5.1.2.1 dhcs_keydesc_t. 5-4
5.1.2.2 dhcs_kfld_desc_t . 5-4

5.1.3 Field Value Lists: dhcs_fldl_val_t and Associated Structures. 5-5
5.1.3.1 dhcs_fldl_val_t . 5-5
5.1.3.2 dhcs_fv_item_t . 5-6
5.1.3.3 dhcs_data_t . 5-7

5.2 Table Interfaces . 5-9
5.2.1 dhcs_add_table. 5-9
5.2.2 dhcs_drop_table . 5-11
5.2.3 dhcs_tpl_close . 5-12
5.2.4 dhcs_tpl_delete. 5-13
5.2.5 dhcs_tpl_fetch . 5-13
5.2.6 dhcs_tpl_insert . 5-15
5.2.7 dhcs_tpl_open . 5-17
v

5.2.8 dhcs_tpl_scan_close . 5-18
5.2.9 dhcs_tpl_scan_fetch . 5-18
5.2.10 dhcs_tpl_scan_open . 5-19
5.2.11 dhcs_tpl_update . 5-21
5.2.12 dhcs_tpl_get_card. 5-22

5.3 Index Interfaces . 5-24
5.3.1 dhcs_create_index . 5-24
5.3.2 dhcs_drop_index. 5-26
5.3.3 dhcs_ix_close . 5-27
5.3.4 dhcs_ix_delete . 5-27
5.3.5 dhcs_ix_insert . 5-29
5.3.6 dhcs_ix_open . 5-30
5.3.7 dhcs_ix_scan_close . 5-32
5.3.8 dhcs_ix_scan_fetch. 5-32
5.3.9 dhcs_ix_scan_open. 5-37
5.3.10 dhcs_ix_get_sel . 5-40

5.4 Storage System Defined Functions And Procedures . 5-45
5.4.1 dhcs_get_procinfo . 5-45

5.5 Long Data Types Interfaces . 5-52
5.5.1 dhcs_get_data . 5-52
5.5.2 dhcs_put_data . 5-54
5.5.3 dhcs_put_hdl. 5-55

5.6 Dynamic Metadata Interfaces . 5-57
5.6.1 dhcs_get_colinfo. 5-57
5.6.2 dhcs_get_idxinfo . 5-59
5.6.3 dhcs_get_metainfo . 5-61
5.6.4 dhcs_get_tblinfo . 5-63

5.7 Tuple Identifier Interfaces . 5-66
5.7.1 dhcs_alloc_tid. 5-66
5.7.2 dhcs_assign_tid. 5-66
5.7.3 dhcs_char_to_tid. 5-67
5.7.4 dhcs_compare_tid. 5-68
5.7.5 dhcs_free_tid . 5-69
5.7.6 dhcs_tid_to_char. 5-70

5.8 Transaction Interfaces . 5-71
5.8.1 dhcs_abort_trans. 5-71
5.8.2 dhcs_begin_trans . 5-71
5.8.3 dhcs_commit_trans. 5-72

5.9 Miscellaneous Functions . 5-73
5.9.1 dhcs_get_error_mesg . 5-73
5.9.2 dhcs_rss_cleanup . 5-74
5.9.3 dhcs_rss_get_info . 5-75
5.9.4 dhcs_rss_init . 5-79
5.9.5 dhcs_rss_initcall . 5-81

5.10 Utility Functions. 5-82
5.10.1 dhcs_compare_data . 5-82
5.10.2 dhcs_conv_data . 5-83

 6 Java Stubs Storage Interface Reference
6.1 Common Classes . 6-1
vi

6.1.1 DharmaRecord . 6-1
6.1.1.1 DharmaRecord . 6-2
6.1.1.1 Syntax. 6-2
6.1.1.1 Returns . 6-2
6.1.1.1 Arguments . 6-2
6.1.1.1 Description . 6-2
6.1.1.2 setFieldValue . 6-2
6.1.1.2 Syntax. 6-2
6.1.1.2 Returns . 6-3
6.1.1.3 getFieldValue . 6-3
6.1.1.3 Syntax. 6-3
6.1.1.3 Returns . 6-3
6.1.1.3 Arguments . 6-3
6.1.1.4 setNull. 6-3
6.1.1.4 Syntax. 6-3
6.1.1.4 Returns . 6-3
6.1.1.4 Arguments . 6-4
6.1.1.5 isNull . 6-4
6.1.1.5 Syntax. 6-4
6.1.1.5 Returns . 6-4
6.1.1.5 Arguments . 6-4
6.1.1.6 setRecordID . 6-4
6.1.1.6 Arguments . 6-4
6.1.1.6 Description . 6-5
6.1.1.7 getRecordID . 6-5
6.1.1.7 Syntax. 6-5
6.1.1.7 Returns . 6-5
6.1.1.7 Description . 6-5

6.1.2 RecordID . 6-5
6.1.2.1 RecordID . 6-6
6.1.2.1 Syntax. 6-6
6.1.2.1 Returns . 6-6
6.1.2.1 Arguments . 6-6
6.1.2.1 Description . 6-6
6.1.2.2 RecordID . 6-6
6.1.2.2 Syntax. 6-6
6.1.2.2 Returns . 6-6
6.1.2.2 Arguments . 6-6
6.1.2.2 Description . 6-6
6.1.2.3 setRecordID. 6-6
6.1.2.3 Syntax. 6-7
6.1.2.3 Returns . 6-7
6.1.2.3 Arguments . 6-7
6.1.2.3 Description . 6-7
6.1.2.4 setRecordID. 6-7
6.1.2.4 Syntax. 6-7
6.1.2.4 Returns . 6-7
6.1.2.4 Arguments . 6-7
6.1.2.4 Description . 6-7
6.1.2.5 setRecordID. 6-7
vii

6.1.2.5 Syntax . 6-7
6.1.2.5 Returns . 6-8
6.1.2.5 Arguments. 6-8
6.1.2.5 Description . 6-8
6.1.2.6 getString . 6-8
6.1.2.6 Syntax . 6-8
6.1.2.6 Returns . 6-8
6.1.2.6 Arguments. 6-8
6.1.2.6 Description . 6-8
6.1.2.7 getLong . 6-8
6.1.2.7 Syntax . 6-8
6.1.2.7 Returns . 6-9
6.1.2.7 Arguments. 6-9
6.1.2.7 Description . 6-9
6.1.2.8 compareRecordID . 6-9
6.1.2.8 Returns . 6-9
• Arguments . 6-9
• Description . 6-9
6.1.2.9 isRecordIDSet . 6-10
6.1.2.9 Syntax . 6-10
6.1.2.9 Returns . 6-10
6.1.2.9 Arguments. 6-10
6.1.2.9 Description . 6-10

6.1.3 DharmaArray . 6-10
6.1.3.1 DharmaArray . 6-10
6.1.3.1 Syntax . 6-10
6.1.3.1 Returns . 6-11
6.1.3.1 Arguments. 6-11
6.1.3.1 Description . 6-11
6.1.3.2 getNthElement . 6-11
6.1.3.2 Syntax . 6-11
6.1.3.2 Returns . 6-11
6.1.3.2 Arguments. 6-11
6.1.3.2 Description . 6-11
6.1.3.3 getSize. 6-11

6.1.4 FieldValue . 6-12
6.1.4.1 FieldValue. 6-13
6.1.4.2 FieldValue. 6-13
6.1.4.3 FieldValue. 6-14
6.1.4.4 getFieldID . 6-14
6.1.4.5 setFieldID . 6-15
6.1.4.6 getTableFieldID . 6-15
6.1.4.7 setTableFieldID. 6-16
6.1.4.8 getMaxLength . 6-16
6.1.4.9 setMaxLength . 6-17
6.1.4.10 getDataLength. 6-17
6.1.4.11 setDataLength . 6-18
6.1.4.12 getWidth . 6-18
6.1.4.13 setWidth . 6-19
6.1.4.14 getScale . 6-19
viii

6.1.4.15 setScale . 6-19
6.1.4.16 getData . 6-20
6.1.4.17 setData . 6-20
6.1.4.18 getTypeID. 6-21
6.1.4.19 setTypeID . 6-21
6.1.4.20 isNull . 6-22
6.1.4.21 setNull. 6-22

6.1.5 FieldValues . 6-23
6.1.5.1 FieldValues. 6-23
6.1.5.2 getNth . 6-23

6.1.6 TableField . 6-24
6.1.6.1 TableField. 6-24
6.1.6.2 getFieldName . 6-25
6.1.6.3 setFieldName . 6-25
6.1.6.4 getFieldID. 6-26
6.1.6.5 setFieldID . 6-26
6.1.6.6 getTypeID. 6-27
6.1.6.7 setTypeID . 6-27
6.1.6.8 isNullable . 6-28
6.1.6.9 setNullable . 6-28
6.1.6.10 setNotNullable . 6-28
6.1.6.11 getMaxLength. 6-29
6.1.6.12 setMaxLength . 6-29
6.1.6.13 getWidth . 6-30
6.1.6.14 setWidth . 6-30
6.1.6.15 getScale. 6-30
6.1.6.16 setScale . 6-31

6.1.7 TableFields. 6-31
6.1.7.1 TableFields . 6-32
6.1.7.2 getNth . 6-32

6.1.8 IndexField . 6-33
6.1.8.1 IndexField. 6-33
6.1.8.2 getFieldID. 6-34
6.1.8.3 setFieldID . 6-34
6.1.8.4 getTypeID. 6-35
6.1.8.5 setTypeID . 6-35
6.1.8.6 getSortOrder . 6-35
6.1.8.7 setSortOrder . 6-36
6.1.8.8 getTableFieldID . 6-36
6.1.8.9 setTableFieldID . 6-37
6.1.8.10 getFieldName . 6-37
6.1.8.11 setFieldName . 6-38

6.1.9 IndexFields. 6-38
6.1.9.1 IndexFields . 6-38
6.1.9.2 getNth . 6-39

6.1.10 DharmaLongVarCharData . 6-39
6.1.10.1 DharmaLongVarCharData . 6-40
6.1.10.2 DharmaLongVarCharData . 6-40
6.1.10.3 isNull . 6-41
6.1.10.4 setNull. 6-41
ix

6.1.10.5 setNotNull . 6-42
6.1.10.6 getLength . 6-42
6.1.10.7 getRemainingLength. 6-43
6.1.10.8 setLength. 6-43
6.1.10.9 getData . 6-43
6.1.10.10 setData. 6-44

6.1.11 DharmaLongVarBinaryData. 6-44
6.1.11.1 DharmaLongVarBinaryData. 6-45
6.1.11.2 DharmaLongVarBinaryData. 6-45
6.1.11.3 isNull. 6-46
6.1.11.4 setNull . 6-46
6.1.11.5 setNotNull . 6-47
6.1.11.6 getLength . 6-47
6.1.11.7 getRemainingLength. 6-48
6.1.11.8 setLength. 6-48
6.1.11.9 getData . 6-48
6.1.11.10 setData . 6-49

6.1.12 ProcedureColumn . 6-49
6.1.12.1 ProcedureColumn . 6-50
6.1.12.2 getParamID . 6-50
6.1.12.3 setParamID . 6-51
6.1.12.4 getDataType . 6-51
6.1.12.5 setDataType . 6-52
6.1.12.6 getFieldName . 6-52
6.1.12.7 setFieldName . 6-53
6.1.12.8 getColumnType. 6-53
6.1.12.9 setColumnType . 6-53
6.1.12.10 getNullable . 6-54
6.1.12.11 setNullable . 6-54
6.1.12.12 getMaxLengt . h6-55
6.1.12.13 setMaxLength . 6-55
6.1.12.14 getWidth . 6-55
6.1.12.15 setWidth . 6-56
6.1.12.16 getScale . 6-56
6.1.12.17 setScale . 6-57
6.1.12.18 getDefaultType . 6-57
6.1.12.19 setDefaultType . 6-58
6.1.12.20 getDefaultValue . 6-58
6.1.12.21 setDefaultValue. 6-58

6.1.13 ProcedureColumns . 6-59
6.1.13.1 ProcedureColumns . 6-59
6.1.13.2 getNth . 6-60
6.1.13.3 getSize. 6-60

6.1.14 ProcedureMetaData . 6-60
6.1.14.1 getOwnerName . 6-61
6.1.14.2 setOwnerName . 6-62
6.1.14.3 .
getProcedureHasResultSet . 6-62
6.1.14.4 setProcedureHasResultSet . 6-62
6.1.14.5 getReturnValue . 6-63
x

6.1.14.6 setReturnValue . 6-63
6.1.14.7 getParameterInformation . 6-64
6.1.14.8 setParameterInformation . 6-64
6.1.14.9 setResultSetInformation . 6-65
6.1.14.10 getResultSetInformation. 6-65
6.1.14.11 getProcedureID. 6-65
6.1.14.12 setProcedureID . 6-66
6.1.14.13 setProcedureName . 6-66
6.1.14.14 getProcedureName . 6-67
6.1.14.15 setConstant . 6-67
6.1.14.16 setProcedureMinParamCount. 6-67
6.1.14.17 setProcedureMaxParamCount . 6-68
6.1.14.18 setProcedureHasReturnValue. 6-68

6.2 Table Interfaces . 6-69
6.2.1 TableHandle . 6-69

6.2.1.1 insert . 6-69
6.2.1.2 getRecord . 6-70
6.2.1.3 update . 6-71
6.2.1.4 delete. 6-72
6.2.1.5 getCardinality . 6-72
6.2.1.6 close . 6-73

6.2.2 TableScanHandle . 6-73
6.2.2.1 getNextRecord . 6-74
6.2.2.2 close . 6-74

6.3 Index Interfaces . 6-75
6.3.1 IndexHandle . 6-75

6.3.1.1 insert . 6-75
6.3.1.2 delete. 6-76
6.3.1.3 getSelectivity . 6-77
6.3.1.4 close . 6-78

6.3.2 IndexScanHandle . 6-78
6.3.2.1 getNextRecord . 6-78
6.3.2.2 close . 6-82

6.4 Storage System Interfaces . 6-82
6.4.1 StorageEnvironment. 6-82

6.4.1.1 createStorageEnvironment . 6-83
6.4.1.2 createStorageManagerHandle. 6-84
6.4.1.3 beginTransaction . 6-84
6.4.1.4 rollbackTransaction . 6-84
6.4.1.5 commitTransaction. 6-85
6.4.1.6 close . 6-85

6.4.2 StorageManagerHandle . 6-86
6.4.2.1 createTable . 6-86
6.4.2.2 dropTable . 6-88
6.4.2.3 createIndex . 6-88
6.4.2.4 dropIndex . 6-90
6.4.2.5 getTableHandle. 6-91
6.4.2.6 getIndexHandle. 6-91
6.4.2.7 getTableScanHandle. 6-92
6.4.2.8 getIndexScanHandle. 6-93
xi

6.4.2.9 getStorageManagerInfo. 6-99
6.4.2.10 getProcedureHandle . 6-103
6.4.2.11 getProcedureMetaData . 6-104
6.4.2.12 getNumberOfTables . 6-105
6.4.2.13 getTableInfo . 6-105
6.4.2.14 getTableColumnInfo . 6-106
6.4.2.15 getIndexInfo . 6-107
6.4.2.16 getIndexColumnInfo . 6-109
6.4.2.17 Close . 6-109

6.5 Long Data Type Interfaces. 6-110
6.5.1 LongDataHandle. 6-110

6.5.1.1 putLongVarCharData . 6-110
6.5.1.2 putLongVarBinaryData. 6-111
6.5.1.3 getLongVarCharData . 6-111
6.5.1.4 getLongVarBinaryData. 6-112

6.6 Procedure & Function Interfaces . 6-112
6.6.1 ProcedureHandle . 6-112

6.6.1.1 execute . 6-112
6.6.1.2 getNextRecord . 6-113
6.6.1.3 close . 6-113

6.7 Miscellaneous classes. 6-114
6.7.1 StorageCodes . 6-114
6.7.2 DharmaStorageException. 6-114

6.7.2.1 DharmaStorageException . 6-114
6.7.2.2 getErrorMessage . 6-115
6.7.2.3 getErrorMessage . 6-115

6.8 Mapping Between SQL and Java Data Types . 6-116
 A Server Utility Reference

A.1 Overview .A-1
A.2 dhdaemon .A-1
A.3 pcntreg. .A-2
A.4 mdcreate .A-3
A.5 Isql .A-4
A.6 Environment Variables .A-5

 B System Catalog Tables
B.1 Overview .B-1
B.2 System Catalog Tables Definitions .B-2

 C Storing NUMERIC Data Directly
C.1 Overview .C-1
C.2 Internal Storage Format for NUMERIC Data .C-1
C.3 Interpreting NUMERIC Data Stored in Internal Format. .C-2

C.3.1 Interpreting the Sign/Exponent Byte of dec_digits .C-2
C.3.2 Interpreting the Data Values Bytes of dec_digits .C-3
C.3.3 Complete Examples: Interpreting Sign/Exponent and Data Bytes of dec_digits C-3

 D Glossary
D.1 Terms. .D-1

Figures
Figure 1-1: Components in the Client/Server DataLink SDK. 1-2
Figure 1-2: Components in the Desktop DataLink SDK . 1-3
xii

Figure 2-1: DataLink SDK Desktop Directories and Files . 2-4
Figure 2-2: DataLink SDK Client/Server Directories and Files 2-10
Figure 3-1: Calls to Retrieve Data in Stage 2: Simple SELECT 3-11
Figure 3-2: Calls to Retrieve Data in Stage 2: Two-Table Join 3-11
Figure 3-3: Calls to Retrieve Data in Stage 3 . 3-14
Figure 3-4: Calls to Store Data in Stage 4: Simple INSERT Statement 3-18
Figure 3-5: Calls to Store Data in Stage 4: Inserting Records from Another Table. . . . 3-18
Figure 3-6: Calls to Retrieve Data in Stage 6 . 3-22
Figure 3-7: Testing Long Data Type Support. 3-23
Figure 5-1: Table Field Lists: dhcs_fld_list_t and dhcs_fld_desc_t 5-2
Figure 5-2: Index Key Lists: dhcs_keydesc_t and dhcs_kfld_desc_t 5-4
Figure 5-3: Field Value Lists: dhcs_fldl_val_t and Associated Structures 5-5
Figure C-1: Format for NUMERIC Data Stored in the dhcs_num_t Structure C-2

Tables
Table 2-1: Summary of Supported Operating Systems and Compilers 2-2
Table 2-2: Summary of DataLink SDK Desktop Development Components 2-5
Table 2-3: Summary of Dharma DataLink SDK Client/Server Development Components2-11
Table 3-1: Implementation Stages for Developing the dhdaemon Executable. 3-4
Table 3-2: Info Type Properties Describing Index Support . 3-15
Table 3-3: TPESQLDBG Logging Values . 3-33
Table 3-4: Date Formats Supported for Different Values of TPE_DFLT_DATE 3-34
Table 3-5: Values of DH_Y2K_CUTOFF Runtime Variable . 3-35
Table 4-1: Files Required for DataLink Server Desktop Release Kit 4-1
Table 4-2: Files Required for DataLink Server Client/Server Release Kit 4-2
Table 5-1: Major Common Data Structures Defined in dhcs.h 5-1
Table 5-2: Index Scan Comparison Operators . 5-37
Table 5-3: BETWEEN Range Operators . 5-40
Table 5-4: Rows Returned for DHCS_IXOP_IN . 5-41
Table 5-5: Argument Values to dhcs_get_data Over a Series of Calls. 5-44
Table 5-6: Type Names for Data Type Conversion . 5-73
Table B-1: System Catalog Table Definitions . B-2
xiii

xiv

Introduction

PURPOSE OF THIS MANUAL
This manual describes the Dharma Software Development Kit (SDK). It describes
implementing ODBC, JDBC and .NET access to proprietary data and considerations
for creating a release kit to distribute the completed implementation.

This manual complements the material in the Dharma SDK SQL ReferenceManual,
Dharma SDK ODBC Driver Guide, Dharma SDK JDBC Driver Guide, Dharma SDK
ISQL Reference Manual and Dharma SDK .NET Data Provider Guide that contain
instructions and reference material for administrators and programmers.

AUDIENCE
This manual is intended for a variety of audiences, including any reader who needs to
understand and assess the benefits of the Dharma SDK. In addition, this document is
also intended for programmers implementing the storage interfaces to a proprietary
storage system

STRUCTURE
This manual contains the following chapters:

Chapter 1 Introduces the features of the Dharma SDK and
describes how it works.

Chapter 2 Describes installing the Dharma SDK development
components and setting up the supplied sample imple-
mentation of the storage interface routines.

Chapter 3 Discusses different approaches to mapping proprietary
to relational tables and details a series of stages for
implementing the storage interfaces.

Chapter 4 Lists the files that must be included on release kits for
distributing a completed Dharma SDK implementation
to other systems.

Chapter 5 Provides detailed reference material on the C storage
interfaces to proprietary storage systems.

Chapter 6 Provides detailed reference material on Java Stubs Stor-
age interface to proprietary storage systems..

Appendix A Contains reference information on utilities used to con-
figure the Dharma Server.

Appendix B Details the structure of the system catalog tables.
Dharma Systems Inc xv

User Guide
CONVENTIONS
The Dharma SDK supports both UNIX and Microsoft Windows environments. Sym-
bols in the left margin indicate material that is applicable to a specific environment.

Indicates steps specific to UNIX.

Indicates steps specific to Windows.

RELATED DOCUMENTATION

Appendix C Describes storing and returning values using the inter-
nal Dharma SDK storage format for SQL NUMERIC
values.

Appendix D Contains a glossary of terms you should know.

Dharma SDK SQL Reference Man-
ual

This manual describes syntax and semantics of
SQL language statements and elements for the
Dharma SDK .

Dharma SDK User Guide This manual describes the Dharma Software
Development Kit (SDK).It describes implementing
JDBC, ODBC and .NET access to proprietary data
and considerations for creating a release kit to dis-
tribute the completed implementation.

Dharma SDK ISQL Reference Man-
ual

This manual provides reference material for the
ISQL interactive tool provided in the Dharma SDK
environment. It also includes a tutorial describing
how to use the ISQL utility.

Dharma SDK ODBC Driver Guide This manual describes Dharma SDK support for
ODBC (Open Database Connectivity) interface
and how to configure the Dharma SDK ODBC
Driver.

Dharma SDK JDBC Driver Guide Describes Dharma SDK support for the JDBC
interface and how to configure the Dharma SDK
JDBC Driver.

Dharma SDK .NET Data Provider
Guide

This guide gives an overview of the .NET Data
Provider. It describes how to set up and use the
.NET Data Provider to access a Dharma SDK data-
base from .NET applications.

Microsoft ODBC Programmer’s Ref-
erence, Version 3.0

Describes the ODBC interface, its features, and
how applications use it.
xvi Dharma Systems Inc

Chapter 1

Introduction

1.1 OVERVIEW
The Dharma SDK (Software Development Kit) is the fastest and easiest route to pro-
viding industry-standard Open Database Connectivity (ODBC), Java Database Con-
nectivity(JDBC) and .NET access to any proprietary database. With the Dharma
SDK, you're one step away from opening your data to the following benefits:

• Plug-and-play inter operability with a vast selection of Windows and Web tools

• Accessibility from any client platform to any server operating system

• Technology that reduces development and testing time, and minimizes deploy-
ment and support issues

The Dharma SDK gives you these benefits at a fraction of the cost of implementing
ODBC/JDBC/.NET support using other methods.

1.2 CLIENT/SERVER AND DESKTOP CONFIGURATIONS
Dharma offers the Dharma SDK in Desktop and Client/Server configurations:

• The Dharma SDK Client/Server configuration provides network access to your
proprietary data. The Dharma SDK Server library runs on the UNIX or Windows
2000/XP server hosting the proprietary storage system. The ODBC tool and the
Dharma SDK ODBC Driver, or the JDBC application and the Dharma JDBC
Driver run on Windows 2000/XP or UNIX clients. The .NET application and the
Dharma SDK .NET Data Provider run on the Windows 2000/XP client.

• The Dharma SDK Desktop configuration is supported only on Windows 2000/XP
and implements a “single-tier” ODBC architecture where the ODBC tool, the
Dharma SDK software and the proprietary data all reside on the same Windows
computer.

Dharma's technology provides simplified development and seamless access from
ODBC/JDBC and Web tools to data in your proprietary storage system.

To help get you started, both configurations include a complete sample implementa-
tion, with source code, that you can adapt to your specific requirements.

1.2.1 Client/Server Configuration
The Dharma SDK Client/Server configuration is distributed as a ready-to-link server
library and client side drivers for ODBC, JDBC and .NET

• The Dharma SDK ODBC Driver processes ODBC function calls from ODBC
applications/tools that request data from the proprietary storage system.
Dharma Systems Inc. 1-1

User Guide
Similarly the Dharma SDK JDBC Driver processes JDBC API calls from JDBC
applications. The Dharma SDK .NET Data Provider services requests from .NET
applications. The Dharma SDK Drivers connect to the Dharma SDK Server,
translate the standard SQL statements into syntax the data source can process,
and return data to the application. The Dharma SDK ODBC Driver runs on Win-
dows 2000/XP/NT/98 clients as well as UNIX clients. The Dharma SDK JDBC
Driver runs on UNIX and Windows2000/XP/NT clients. The Dharma SDK .NET
Data Provider runs on Windows 2000 and XP clients.

• The Dharma Server library runs on the server hosting the proprietary storage sys-
tem. You link it with storage interfaces to your proprietary storage system.

The following figure shows the components in the Dharma SDK Client/Server.

Figure 1-1: Components in the Client/Server Dharma SDK

1.2.2 Desktop configuration
The Dharma SDK Desktop configuration is distributed as a ready-to-link ODBC
driver library. JDBC and .NET clients are not supported in this configuration.You link

Dharma SDK Server

Any Proprietary
Storage System

Dharma SDK
ODBC Driver

GUI tools

Dharma SDK
JDBC Driver

Internet
applications

Dharma SDK

 .NET Data Provider

 .NE T
 applications

Storage Interfaces
1-2 Dharma Systems Inc.

Introduction
it with storage interfaces to your proprietary storage system to provide access from
Windows, XP and Web tool directly to your data.

The following figure shows the components in Dharma SDK Desktop.

Figure 1-2: Components in the Dharma Desktop SDK

1.3 STORAGE INTERFACES
The Dharma SDK supports two types of Storage Interfaces. C Storage stubs for inter-
facing with Proprietary databases written in the C/C++ languages and Java Storage
stubs for interfacing with Proprietary databases written in the Java language.

1.4 SQL FEATURE SUPPORT
 The Dharma SDK includes the following SQL features:

- An extensive set of scalar functions

- Table and column privileges

- Queries that use outer joins and set operators

Storage Interfaces

Any Proprietary
Database

Microsoft QueryVisual BasicPowerBuilder

ODBC Driver Manager

Dharma
ODBC Driver
Dharma Systems Inc. 1-3

User Guide
- SQL support for subqueries, derived tables, views, and case expressions

- Performance optimizations for access to very large databases.

1.5 BENEFITS
Tools Inter operability
The Dharma SDK ODBC Driver is compatible with Version 3.52 of the Microsoft
ODBC standard. It supports all Core and Level 1 API functions, and all Level 2 func-
tions required by Windows and Web tools.

The Dharma SDK JDBC Driver is JDBC 1.3 standard compliant.The Dharma SDK
JDBC Driver is a type 4 Driver.

Dharma extensively tests the Dharma SDK to insure that it provides seamless compat-
ibility with the latest versions of all popular Windows-based tools, including Power-
Builder, Microsoft Access, Microsoft Visual Basic, and Crystal Reports. Leading
Web servers that have been tested with the Dharma SDK include Netscape Communi-
cation Server and Microsoft Internet Information Server.

In addition, Dharma maintains marketing relationships with key client/server vendors
and tests pre-release versions of their products to insure continued compatibility.

Fast Development
With Dharma's SDK, instead of months – or years – of development investment, you
can implement robust ODBC/JDBC/.NET access to proprietary storage systems in
weeks. All without any changes to the underlying storage system.

Unlike other access solutions, which require that you provide 20 percent of the coding
effort, Dharma’s technology dramatically decreases the need for code development.
Implementers are freed from issues such as:

• Accessing and managing of metadata

• Choosing the best method for retrieving user data

• Implementing additional sorting and buffering mechanisms

• Implementing update logic if only read access is required

With the Dharma SDK, typical storage template implementations require only 500 to
1,000 lines of C or Java source code. Compared to other technologies, the minimal
coding required avoids extensive testing and support burdens.

1.6 IMPLEMENTING ACCESS TO PROPRIETARY DATA
Extending ODBC/JDBC/.NET access to your proprietary data is a simple process:

1. Implement C or Java storage interface templates (also called stubs in this manual)
to access user data in the proprietary system.

2. Link the implemented storage interfaces with the Dharma SDK library to create a
DLL or executable in case of C stubs. For Java stubs, compile the Java files to cre-
ate new classes.

3. Enter metadata that describes the proprietary data layout
1-4 Dharma Systems Inc.

Introduction
To get started, read Chapter 2 to find out how to install Dharma SDK development
components and use the supplied sample implementation. Then, see Chapter 3 for
specifics on implementing storage interfaces to access your own proprietary storage
system.
Dharma Systems Inc. 1-5

User Guide
1-6 Dharma Systems Inc.

Chapter 2

Getting Started

2.1 INTRODUCTION
This chapter describes how to get started using the Dharma SDK. This includes
installing the development component and setting up and accessing the supplied sam-
ple implementation of the Dharma SDK. The following sections describe these steps
for the Desktop and Client/Server configurations.

Other chapters describe how to proceed with your own implementation for your pro-
prietary storage system. For example,

• Chapter 3 describes how to implement the storage interfaces. In particular, sec-
tion 3.4 describes how to build a Dharma SDK Server executable image from
your implementation and set up access to it. This section describes how to build
the classes for the Java storage stubs as well.

• Chapter 4 describes considerations for creating a release kit to install your com-
pleted implementation of the Dharma SDK Server on systems with the proprietary
storage system.

2.2 REQUIRED SOFTWARE
This section summarizes the following:

• The operating systems that the Dharma SDK supports

• How to install development components from the CD-ROM

• The compilers used to build completed implementations of the storage interfaces

• On Sun Solaris, HP-UX and Linux, use the Unix ODBC Driver manager which
is available for free download from the following URL http://www.unixodbc.org
(unixODBC-2.2.10.tar.gz)

The following table summarizes the supported operating systems and compilers.This
table lists the contents of Dharma SDK Components in the CD-ROM as well.
Dharma Systems Inc. 2-1

User Guide
Table 2-1: Summary of Supported Operating Systems and Compilers

Operating System To Install Dharma SDK Components
from CD-ROM Compiler

Microsoft Windows
2000, Windows XP
(Desktop)

Run the setup program in the follow-
ing subdirectory appropriate to your
license

Desktop - DHPRODT91

Microsoft Visual C++ Version
6.0

Microsoft Windows
2000
(Client/Server)

Run the setup program in the follow-
ing subdirectories appropriate to
your license

Server – DHPROSVR91
ODBC Driver – DHODBC91
JDBC Driver – DHJDBC91
.NET provider – DHDOTNET91

Microsoft Visual C++ Version
6.0

Sun Solaris
Version 8.0/9.0
(Client/Server only)

Untar the file in the _SOL subdirec-
tory appropriate to your license:

Server - DHPROSVR91.SOL
ODBC Driver - DHODBC91.SOL
JDBC Driver - DHJDBC91.SOL

Sun cc Workshop compilers
5.0

IBM AIX
Version 4.3.1
(Client/Server only)

Untar the file in the _AIX subdirec-
tory appropriate to your license:

Server – DHPROSVR91.AIX
ODBC Driver – DHODBC91.AIX
JDBC Driver - DHJDBC91.AIX

C compiler included with C
Set++ for AIX Version 3.1.4.
RTE level 3.6.4.

SCO OpenServer
Version 5.0.2
(Client/Server only)

Untar the file in the _SCO subdirec-
tory appropriate to your license:

Server – DHPROSVR91.SCO
ODBC Driver – DHODBC91.SCO
JDBC Driver - DHJDBC91.SCO

Optimizing C Compiler (from
OpenServer Development Sys-
tem Version 5.0.2).

HP-UX
Version 11.0
(Client/Server only)

Untar the file in the _HP subdirectory
appropriate to your license:

Server – DHPROSVR91.HP
ODBC Driver – DHODBC91.HP
JDBC Driver - DHJDBC91.HP

HP Native C Compiler.

Red Hat Linux
Version 9.0
(Client/Server only)

Untar the file in the _LIN subdirectory
appropriate to your license:

Server – DHPROSVR91.LIN
ODBC Driver – DHODBC91.LIN
JDBC Driver - DHJDBC91.LIN

GNU Project C and C++ Com-
piler Version 3.3.1
2-2 Dharma Systems Inc.

Getting Started
SDK for Java product requires sun JDK version 1.4.2 to build the Java storage stubs.
C/C++ information given in the above table is not applicable for SDK for Java.

2.3 DESKTOP
As described in section 1.2.1, the Desktop configuration combines the Dharma SDK
ODBC Driver and the Dharma SDK Server in a single executable file that provides
access to a proprietary storage system on the same Windows system. The Dharma
Desktop SDK runs on Windows XP and Windows 2000. The Desktop configuration is
available only for SDK with C stubs and not for SDK with Java stubs.

2.3.1 Installing Development Components
The Dharma SDK Desktop configuration is distributed on CD-ROM. To install the
development components:

1. Insert the CD-ROM and execute the setup.exe program.

2. Answer the queries from setup, including where to create the directory for the
development components. Examples in this section use the %TPEROOT% direc-
tory.

The installation creates the directory structure shown in the following figure. Table
2–2 includes descriptions of the components in each directory.
Dharma Systems Inc. 2-3

User Guide
Figure 2-1: Dharma SDK Desktop Directories and Files for C stubs

 dhdemo.dll

%tperoot%

 isql.exe

 mdcreate.exe

bin

login.res
libsrvst.liblib

odbcsdk

wep.obj

%windir% dhstodbc.ini

 Readme

dhdaemon.dsp

dhcs.c
dhcs.h

src

sample demo.dsp

demo_main.c
demo.h

dhdaemon.mak

demo.mak

def dhstodbc.def

md_template

dherrors

 SDK9.1_ISQL.pdf

 dhstsetp.dll

Docs

dhcs_main.c

 SDK9.1_SQL.pdf
 SDK9.1_User.pdf

 SDK9.1_ODBC.pdf
 SDK9.1_JDBC.pdf

 SDK9.1_DNDP.pdf

demo.c

demo_stubs.c
k

sql_conf
2-4 Dharma Systems Inc.

Getting Started
Table 2-2: Summary of Dharma SDK Desktop Development Components for C stubs.

File Description

Docs/SDK9.1_User.pdf Dharma SDK User Guide in PDF format.

Docs/SDK9.1_SQL.pdf Dharma SDK SQL Reference in PDF format.

Docs/SDK9.1_ODBC.pdf Dharma SDK ODBC Driver Guide in .PDF format.

Docs/SDK9.1_JDBC.pdf Dharma SDK JDBC Driver Guide in PDF format.

Docs/SDK9.1_DNDP.pdf Dharma SDK .NET Data Provider Guide in PDF format.

Docs/SDK9.1_ISQL.pdf Dharma SDK ISQL Reference in PDF format.

Readme Online version of installation instructions, including any additional
notes not included in the printed documentation.

bin\dhdemo.dll ODBC sample DLL, pre-built from files in sample directory (copy the
file to dhstodbc.dll to use the sample implementation).

bin\dhstsetp.dll Setup DLL for adding ODBC data sources.

bin\mdcreate.exe Utility to create a data dictionary.

bin\isql.exe Utility for loading metadata and executing simple SQL queries.

lib\dherrors Dharma error mapping file.

lib\sql_conf Configuration file used by the isql.

lib\libsrvst.lib Dharma SQL engine library (links with implemented storage inter-
faces).

lib\login.res Object file to link with implemented storage interfaces.

lib\wep.obj Object file to link with implemented storage interfaces.

odbcsdk\def\dhstodbc.def Definitions file of interfaces exported from the DLL.

odbcsdk\sample\demo.c Source file for sample implementation.

odbcsdk\sample\demo_stubs.c Source file for sample stub functions.

odbcsdk\sample\demo_main.c Source file for sample main() function implementation.

odbcsdk\sample\demo.h Header file for sample implementation.

odbcsdk\sample\demo.dsp Visual C++ project file for building the ODBC driver sample implemen-
tation.

odbcsdk\sample\demo.mak Makefile for building the ODBC driver from the sample implementa-
tion.

odbcsdk\sample\md_template Template script for loading metadata.

odbcsdk\src\dhcs.c Source file for stubs.

odbcsdk\src\dhcs_main.c Source file for main() function in stubs.

odbcsdk\src\dhcs.h Header file for stubs.

odbcsdk\src\dhdaemon.dsp Visual C++ project file for building the ODBC driver for the proprietary
storage system.
Dharma Systems Inc. 2-5

User Guide
odbcsdk\src\dhdaemon.mak Makefile for building the ODBC driver for the proprietary storage sys-
tem.

%windir%\dhstodbc.ini Initialization file containing environment variables (placed in the direc-
tory specified by the windir environment variable).

Table 2-2: Summary of Dharma SDK Desktop Development Components for C stubs.

File Description
2-6 Dharma Systems Inc.

Getting Started
Figure 2-2: Dharma SDK desktop directories and files for Java stubs

dhstodbc.dll

%tperoot%

 isql.exe

 mdcreate.exe

bin

lib

sdk4java

 Readme

src

sample

build.bat

Java files for
the sample
implementation

dherrors

 SDK9.1_ISQL.pdf

 dhstsetp.dll

Docs SDK9.1_SQL.pdf
 SDK9.1_User.pdf

 SDK9.1_ODBC.pdf
 SDK9.1_JDBC.pdf

 SDK9.1_DNDP.pdf

sql_conf

build.bat

Java stub files

md_template
Dharma Systems Inc. 2-7

User Guide
Table 2-3: Summary of Dharma SDK Desktop Development Components for Java stubs.

2.3.2 Renaming the Desktop Sample Implementation

2.3.2.1 SDK for C stubs
The installation procedure creates an already-built version of the sample Dharma SDK
implementation in the file bin\dhdemo.dll.

To use the sample implementation, you must copy or rename the file to dhstodbc.dll.

Note that if you rename the file, it will be overwritten when you build the Dharma
SDK DLL from your implementation (see section 3.4.1.1). If that happens, and you
want to rebuild the sample implementation, execute the makefile odbcsdk\sam-
ple\demo.mak. Open and build the demo.mak file in Microsoft Visual C++ to create
the Dharma SDK DLL for the sample implementation.

File Description

Docs/SDK9.1_User.pdf Dharma SDK User Guide in PDF format.

Docs/SDK9.1_SQL.pdf Dharma SDK SQL Reference in PDF format.

Docs/SDK9.1_ODBC.pdf Dharma SDK ODBC Driver Guide in PDF format.

Docs/SDK9.1_JDBC.pdf Dharma SDK JDBC Driver Guide in PDF format.

Docs/SDK9.1_DNDP.pdf Dharma SDK .NET Data Provider Guide in PDF format.

Docs/SDK9.1_ISQL.pdf Dharma SDK ISQL Reference in PDF format.

Readme Online version of installation instructions, including any additional
notes not included in the printed documentation.

bin\dhstodbc.dll ODBC DLL.

bin\dhstsetp.dll Setup DLL for adding ODBC data sources.

bin\mdcreate.exe Utility to create a data dictionary.

bin\isql.exe Utility for loading metadata and executing simple SQL queries.

lib\dherrors Dharma error mapping file.

lib\sql_conf Configuration file used by the isql.

sdk4java\src\build.bat Batch file that is used to build the classes.

sdk4java\src*java Java files that customers are expected to fill in.

sdk4java\src\md_template Template script for loading metadata.

sdk4java\sample\build.bat Batch file that is used to build the classes.

sdk4java\sample*java Source files for sample implementation.
2-8 Dharma Systems Inc.

Getting Started
2.3.2.2 SDK for Java stubs
SDK for Java provides classes for a sample java storage system. These class files are
present in the %TPEROOT%\classes directory. Building the classes after the stub
implementation will overwrite these classes. Hence, you may want to backup the
existing files in the classes directory to use the sample implementation later. To
rebuild the sample java storage system classes, execute the build.bat file provided in
the %TPEROOT%\sdk4java\sample directory.

2.3.3 Loading Metadata
Metadata defines SQL tables and indexes that map the structure of data in a propri-
etary storage system to standard relational forms. The Dharma SDK includes utilities
to create a data dictionary for your proprietary storage system (the mdcreate utility)
and load metadata into it (the isql utility).

The executable %TPEROOT%\bin\mdcreate.exe is a utility to create a data dictio-
nary that stores metadata. Invoke the mdcreate utility and supply a name that will be
used for the data dictionary and for access to the sample implementation. For exam-
ple:

%TPEROOT%\bin\mdcreate demo_db

The mdcreate utility creates a subdirectory called dbname.dbs under the

 %TPEROOT% directory and populates the directory with the necessary files. For
instance, the preceding example creates the directory %TPEROOT%\demo_db.dbs.

The executable %TPEROOT%\bin\isql is a tool for loading metadata. It accepts a
script with special SQL CREATE TABLE and CREATE INDEX statements that
insert metadata for existing tables.

The sample implementation includes a script that loads the metadata for several tables.
(As part of the implementation process, you create such a script for existing tables in
your proprietary storage system. See section 3.3.1.1).

To load the metadata for the sample, invoke isql to execute the script file %TPE-
ROOT%\odbcsdk\sample\md_template for C and %TPEROOT%\sdk4jdbc\sam-
ple\md_template for SDK for Java. The following example shows invoking
md_template to create metadata for a database called demo_db:

For SDK for C

isql -s %TPEROOT%\odbcsdk\sample\md_template demo_db

For SDK for Java
isql -s %TPEROOT%\sdk4java\sample\md_template demo_db

 Dharma/isql Version 09.01.0000

 Dharma Systems Inc (C) 1988-2005.

 Dharma Systems Pvt Ltd (C) 1988-2005.
Dharma Systems Inc. 2-9

User Guide
The isql command has other options for additional flexibility. See the isql reference
section in Appendix A and Dharma SDK ISQL Reference Manual for a more detailed
description of the isql command.

2.3.4 Adding Names of ODBC Data Sources
Use the Microsoft ODBC Administrator utility to add names of specific data sources
you want to access.

1. Invoke the Microsoft ODBC Administrator from Windows (by default, from the
Control Panel program group). The Administrator's Data Sources dialog box
appears.

2. Click on the System DSN tab. A list of existing system data sources appears.

3. Click on the Add… button. The Create New Data Source dialog box appears.

4. In the list box, double-click on the Dharma SDK Desktop driver. The Dharma
ODBC Setup dialog box appears.

5. Enter information in the following text boxes:

- Data Source Name: — the name of the ODBC data source for use in ODBC
connect calls and by the ODBC Administrator.

- Description: — An optional descriptive string.

- Database: — The database name you specified when you invoked the mdcre-
ate utility to create the data dictionary (see section 2.3.3).

- User ID: — The user name for the process.

- Password: — The password for the process.

- Data Dir: — The location of the data dictionary directory. Leave this field
blank unless the mdcreate command used the -d argument (see Appendix A).
(If it did, specify the same value here as that used in the -d argument.)

- Options: — An optional implementer specific string specifying additional
connection options. This string has a maximum length of 200 characters. The
contents of this string are implementer dependent.

You must supply the name of the data source. If you omit the database name, user
name, or password, the driver prompts the ODBC application user for that information
when it connects to the data source.

The ODBC Administrator utility updates the ODBC Driver Manager registry entry
with the information supplied in the dialog box.

2.4 CLIENT/SERVER
With Dharma SDK Client/Server, you need to complete steps on both the server sys-
tem and the client system. In addition, you need to execute makefiles to build a
Dharma SDK Server executable image for the supplied sample implementation.

The following sections describe these steps:

• Installing the Dharma SDK development components
2-10 Dharma Systems Inc.

Getting Started
• Setting the TPEROOT variable to refer to the installation directory

• Renaming the Dharma Server for the supplied sample implementation

• Setting up ODBC access to the sample Dharma SDK Server:

- Configuring and starting the dhdaemon Dharma Server process on the server
system

- Loading data definitions into the data dictionary on the server system

- Installing and configuring the ODBC Driver on client systems (required on all
systems that will access the server)

The steps to complete these tasks are similar for both UNIX and Windows platforms.
Icons in the left margin indicate where there are differences.

Indicates steps specific to UNIX.

Indicates steps specific to Windows.

2.4.1 Installing Development Components
For both UNIX and Windows, the Dharma SDK is distributed on CD-ROM.

For UNIX, the CD-ROM is formatted in ISO 9660 format. To install the development
components on UNIX, follow these steps:

1. Log in as root.

2. Create an account with the user name dharma and log in as dharma.

3. Mount the CD-ROM, specifying an appropriate mountpoint in the mount com-
mand (for instance, /cdrom). Here are mount commands for mounting the CD-
ROM on various UNIX platforms:

- Sun Solaris: Automatically mounted

- IBM AIX: mount -v'cdrfs' -r'' /dev/cd0 /cdrom

- SCO OpenServer: mount -f ISO9660 -r /dev/cd0 /cdrom

- HP-UX: ioscan -fnC disk # returns CD-ROM device name
 mount -o cdcase -r /dev/dsk/c0t2d0 /cdrom

- Linux: mount /mnt/cdrom4

4. Extract the contents of the distribution media with a tar command. The name of
the tar file to extract depends on your operating system and license. See Figure 2-
1 for the correct file name.

Here is a typical command that extracts files from the CD-ROM. Substitute the
appropriate mountpoint and tar file name for your environment:
Dharma Systems Inc. 2-11

User Guide
$ cd /vol6/sdkdir

$ tar -xvf /cdrom/DHPROSVR90.SOL

The tar command creates the directory structure and files shown in Figure 2-3. Table
2-4 gives brief descriptions of the files.

1. Run the setup.exe file on the CD-ROM.

2. Answer the queries from setup, including where to create the directory for the
development components. Examples in this section use the %TPEROOT% direc-
tory.

The installation creates a parallel directory structure and file names to those on UNIX.
See Figure 2-3 and Table 2-4.
2-12 Dharma Systems Inc.

Getting Started
Figure 2-3: Dharma SDK Client/Server Directories and Files for C stubs.

bin

%tperoot%

src

 Docs

Readme

* = Windows
** = UNIX only

%windir% dhsodbc.ini*

 SDK9.1_User.pdf
 SDK9.1_ISQL.pdf

pcntreg.exe*

isql

dhdemo

mdcreate

dherrors
libsrv.lib*

lib

libserver.a**

libdhodbcdm.so**

makefile**

dhcs.c
dhcs.h

dhdaemon.dsp*

dhdaemon.mak*

dhcs_main.c

sample

makefile**

demo.c

demo.h

md_template

demo.dsp*

demo.mak*

 demo_main.c

 SDK9.1_ODBC.pdf
 SDK9.1_JDBC.pdf
 SDK9.1_SQL.pdf
 SDK9.1_DNDP.pdf

help_isql

odbcsdk

demo_stubs.c

sql_conf
Dharma Systems Inc. 2-13

User Guide
Table 2-4: Summary of Dharma SDK Client/Server Development Components for C
stubs.

File Description

Docs/SDK9.1_User.pdf Dharma SDK User Guide in PDF format.

Docs/SDK9.1_SQL.pdf Dharma SDK SQL Reference in PDF format.

Docs/SDK9.1_ODBC.pdf Dharma SDK ODBC Driver Guide in PDF format.

Docs/SDK9.1_JDBC.pdf Dharma SDK JDBC Driver Guide in PDF format.

Docs/SDK9.1_DNDP.pdf Dharma SDK .NET Data Provider Guide in PDF format.

Docs/SDK9.1_ISQL.pdf Dharma SDK ISQL Reference in PDF format.

Readme Online version of installation instructions, including any
additional notes not included in the printed documenta-
tion.

bin/dhdemo ODBC sample executable, pre-built from files in the
sample directory (copy the file to dhdaemon to use the
sample implementation).

bin/mdcreate Utility to create a data dictionary.

bin/isql Utility for loading metadata and executing simple SQL
queries on it.

bin/pcntreg.exe Utility to add and delete entries for the Dharma SDK in
the Windows 2000 registry.

lib/libserver.a
lib/libsrv.lib

Dharma SQL engine library (links with implemented
storage interfaces).

lib/dherrors Dharma error mapping file.

lib/sql_conf Configuration file used by the isql.

help_isql Dharma ISQL online help.

odbcsdk/sample/demo.h Header file for sample implementation.

odbcsdk/sample/demo_main.c Source file for sample main() function implementation.

odbcsdk/sample/demo.c Source file for sample implementation.

odbcsdk/sample/demo_stubs.c Source file for sample stub functions.

odbcsdk/sample/demo.dsp Visual C++ project file for building the ODBC driver
sample implementation on Windows 2000.

odbcsdk/sample/demo.mak Makefile for building the ODBC driver from the sample
implementation on Windows 2000.

odbcsdk/sample/makefile Makefile for building the Dharma SDK Server from the
sample implementation on UNIX.

odbcsdk/sample/md_template Template script for loading metadata.

odbcsdk/src/dhcs.h Header file for stubs.
2-14 Dharma Systems Inc.

Getting Started
odbcsdk/src/dhcs_main.c Source file for main() function in stubs.

odbcsdk/src/dhcs.c Source file for stubs.

odbcsdk/src/dhdaemon.dsp Visual C++ project file for building the ODBC driver for
the proprietary storage system on Windows 2000.

odbcsdk/src/dhdaemon.mak Makefile for building the ODBC driver for the proprietary
storage system on Windows 2000.

odbcsdk/src/makefile Makefile for building the Dharma SDK Server for the
proprietary storage system on UNIX.

%windir%\dhsodbc.ini Initialization file containing environment variables
(placed in the directory specified by the windir environ-
ment variable).

Table 2-4: Summary of Dharma SDK Client/Server Development Components for C
stubs.

File Description
Dharma Systems Inc. 2-15

User Guide
Figure 2-4: Dharma SDK Client/Server Directories and Files for Java stubs.

dhdaemon.exe

%tperoot%

 pcntreg.exe

 isql.exe

bin

lib

sdk4java

 Readme

src

sample

build.bat

Java files for
the sample
implementation

dherrors

 SDK9.1_ISQL.pdf

 mdcreate.exe

Docs SDK9.1_SQL.pdf
 SDK9.1_User.pdf

 SDK9.1_ODBC.pdf
 SDK9.1_JDBC.pdf

 SDK9.1_DNDP.pdf

sql_conf

build.bat

Java stub files

md_template
2-16 Dharma Systems Inc.

Getting Started
Table 2-5: Summary of Dharma SDK Client/Server Development Components for Java
stubs.

2.4.2 Setting the TPEROOT Variable on the Server System
The TPEROOT environment variable specifies the main directory created during the
Dharma SDK installation. TPEROOT must be set before you can run the Dharma
SDK Server.

On UNIX, you must set TPEROOT interactively or in a script:

setenv TPEROOT /vol6/sdkdir

On Windows, when you install the Dharma SDK development components, the instal-
lation creates an initialization file, %windir%\dhsodbc.ini, that sets TPEROOT to the
directory you specified during the installation. You should not have to change the file.

File Description

Docs/SDK9.1_User.pdf Dharma SDK User Guide in PDF format.

Docs/SDK9.1_SQL.pdf Dharma SDK SQL Reference in PDF format.

Docs/SDK9.1_ODBC.pdf Dharma SDK ODBC Driver Guide in PDF format.

Docs/SDK9.1_JDBC.pdf Dharma SDK JDBC Driver Guide in PDF format.

Docs/SDK9.1_DNDP.pdf Dharma SDK .NET Data Provider Guide in PDF format.

Docs/SDK9.1_ISQL.pdf Dharma SDK ISQL Reference in PDF format.

Readme Online version of installation instructions, including any additional
notes not included in the printed documentation.

bin\dhdaemon.exe Dharma server.

bin\mdcreate.exe Utility to create a data dictionary.

bin\isql.exe Utility for loading metadata and executing simple SQL queries.

lib\dherrors Dharma error mapping file.

lib\sql_conf Configuration file used by the isql utility.

sdk4java\src\build.bat Batch file that is used to build the classes.

sdk4java\src*java Java files that customers are expected to fill in.

sdk4java\src\md_template Template script for loading metadata.

sdk4java\sample\build.bat Batch file that is used to build the classes.

sdk4java\sample*java Source files for sample implementation.
Dharma Systems Inc. 2-17

User Guide
2.4.3 Renaming the Client/Server Sample Implementation

2.4.3.1 SDK for C stubs
The installation procedure creates an already-built version of the sample Dharma SDK
Server implementation in the bin/dhdemo executable. You need to copy or rename the
file to use the sample implementation.

On UNIX, copy or rename the dhdemo executable file to dhdaemon.

Note that if you rename the file, it will be overwritten when you build the Dharma
SDK Server from your implementation (see section 3.4.2.2). If that happens, and you
want to use the sample implementation, execute the makefile odbcsdk/sample/make-
file to rebuild the bin/dhdemo executable file. Refer to Table 2-1 to make sure you
have the compiler to build the sample implementation.

Example 2-1: Rebuilding the Dharma SDK Server for the Sample Implementation

$ cd $TPEROOT/odbcsdk/sample

$ make

On Windows, copy or rename the dhdemo.exe executable file to dhdaemon.exe.

Note that if you rename the file, it will be overwritten when you build the Dharma
SDK Server from your implementation (see section 3.4.2.2). If that happens, and
you want to use the sample implementation, execute the makefile odbcsdk\sam-
ple\demo.mak to rebuild the bin\dhdemo.exe executable file. Open and build the
demo.mak file in Microsoft Visual C++ to create the Dharma SDK Server for the sam-
ple implementation.

2.4.3.2 SDK for Java stubs
SDK for Java provides classes for a sample java storage system. These class files are
present in the %TPEROOT%\classes directory. Building the classes after the stub
implementation will overwrite these classes. Hence, you may want to backup the
existing files in the classes directory to use the sample implementation later. To
rebuild the sample java storage system classes, execute the build.bat file provided in
the %TPEROOT%\sdk4java\sample directory.

2.4.4 Starting the dhdaemon Dharma SDK Server Process
The following sections describe the steps you need to complete to start the Dharma
SDK Server:

• Edit the network services file to associate the sqlnw service name with a port num-
ber

• Start the dhdaemon Dharma SDK Server process

For clients to access the proprietary storage system through the Dharma SDK Server,
they need to install the Dharma SDK ODBC Driver and add a data source that corre-
sponds to the Dharma SDK Server. Section 2.3.4 describes those steps.
2-18 Dharma Systems Inc.

Getting Started
2.4.4.1 Edit the Services File to Add the sqlnw Service Name
The network services file (typically, the file /etc/services) must associate a service
name for the Dharma network with a port number. Log in as root to modify the ser-
vices file.

Use the service name sqlnw for the Dharma network. Edit the network services file
and add an entry similar to the one shown in the following example. Choose port
numbers that will not conflict with other network applications.

Example 2-2: Server-Side Services File Entry for sqlnw

sqlnw 1990/tcp

Applications that connect to databases over the network must specify the same port
number for the service name used in starting the dhdaemon process. Since the
Dharma SDK ODBC Driver expects a port number of 1990 by default, use that num-
ber to avoid having to modify the services file on clients.

The details of adding the service name are the same for Windows. However, the path
for the services file is likely to be different. A typical path for the services file on
Windows is:

%windir%\system32\drivers\etc\SERVICES

2.4.4.2 UNIX Server Systems: Start the Dhdaemon Process
The Dharma SDK Server process dhdaemon must be running for ODBC clients to
access the proprietary storage system. Issue the dhdaemon start command as shown
in the following example to start the process:

Example 2-3: Starting the dhdaemon Process for the Sample Implementation

$ dhdaemon start

 Dharma/dhdaemon Version 09.01.0000

 Dharma Systems Inc (C) 1988-2005.

 Dharma Systems Pvt Ltd (C) 1988-2005.

Daemon started: PID 25457

The dhdaemon command has other options for additional flexibility. See the dhdae-
mon reference section in Appendix A for more details.

2.4.4.3 Windows Server Systems: Start the Dhdaemon Service
In Windows, the dhdaemon executable runs as a listener process. The installation
automatically registers the dhdaemon image as the Dhdaemon 9.01.00 service in the
Windows registry. (You can use the pcntreg utility to remove or re-register the dhdae-
mon executable as a service. See the pcntreg reference section in Appendix A for
more details.)

Follow these steps to start the Dhdaemon service:

1. Invoke the Windows Control Panel and select Services. In the list that appears,
select the entry for Dhdaemon.
Dharma Systems Inc. 2-19

User Guide
2. Click the Start button.

Note: The dhdaemon command has the options that can be entered in the Star-
tup Parameters: edit box. See the dhdaemon section in Appendix A for
more details.

2.4.5 Loading Metadata
Metadata defines SQL tables and indexes that map the structure of data in a propri-
etary storage system to standard relational forms. The Dharma SDK includes utilities
to create a data dictionary for your proprietary storage system (the mdcreate utility)
and load metadata into it (the isql utility).

2.4.5.1 Creating the Data Dictionary with mdcreate
The executable $TPEROOT/bin/mdcreate is a utility to create a data dictionary that
accepts metadata.

Log in as dharma before creating the data dictionary. Invoke the mdcreate utility and
supply a name that will be used for the data dictionary and for access to the propri-
etary storage system. Example 2–4 shows invoking mdcreate to create a database
called demo_db for use with the sample implementation:

Example 2-4: Using mdcreate to Create the demo_db Sample Database

$ $TPEROOT/bin/mdcreate demo_db

 Dharma/mdcreate Version 09.01.0000

 Dharma Systems Inc (C) 1988-2005.

 Dharma Systems Pvt Ltd (C) 1988-2005.

$

The mdcreate utility creates a subdirectory called dbname.dbs under the $TPEROOT
directory and populates the directory with the necessary files. For instance, the previ-
ous example creates the directory $TPEROOT/demo_db.dbs.

On Windows, the executable for mdcreate is in the bin subdirectory under the direc-
tory specified during installation. The mdcreate utility creates a subdirectory called
dbname.dbs under the installation directory and populates the directory with the nec-
essary files.

2.4.5.2 Loading Metadata With isql
The executable $TPEROOT/bin/isql is a tool for loading metadata. It accepts a script
with special SQL CREATE TABLE and CREATE INDEX statements that insert
metadata for existing tables.

The sample implementation includes a script that loads the metadata for several tables
in the sample. (As part of the implementation process, you create such a script for
existing tables in your proprietary storage system. See section 3.3.1.1.)

To load the metadata for the sample, invoke isql to execute the script file $TPEROOT/
odbcsdk/sample/md_template. Invoke isql on the server after the dhdaemon service is
started. Log in as dharma before invoking isql.
2-20 Dharma Systems Inc.

Getting Started
The following example shows how to invoke md_template to create metadata for a
database called demo_db.

Example 2-5: Using isql to Load Metadata

For SDK for C

$ isql -s $TPEROOT/odbcsdk/sample/md_template demo_db

For SDK for Java

$ isql -s $TPEROOT/sdk4java/sample/md_template demo_db

 Dharma/isql Version 09.01.0000c

 Dharma Systems Inc (C) 1988-2005.

 Dharma Systems Pvt Ltd (C) 1988-2005.

/vol6/sdkdir/bin/dhdaemon.exe <SQL SERVER 24211> -d demo_db -h
23907608 sqlnw

--

--

-- Template file for loading metadata for tables that already

-- exist in the underlying storage system.

--

--

CREATE TABLE test1(

 int_col INTEGER,

 char_col CHAR(32),

 date_col DATE

)

 STORAGE_ATTRIBUTES 'METADATA_ONLY'

.

.

.

The isql command has other options for additional flexibility. See the isql reference
section in Appendix A for a more detailed description of the isql command.

On Windows, the executable for isql is in the bin subdirectory under the directory
specified during installation.

2.5 DHARMA SDK ODBC DRIVER

2.5.1 Introduction
This chapter contains the following information:

• Summarizes support for ODBC.

• Describes building the Dharma SDK ODBC Driver.
Dharma Systems Inc. 2-21

User Guide
• Shows how to edit network configuration files and add ODBC data sources

• Describes how the ODBC driver obtains the user name and password to pass to
the Dharma SDK data source for validation

2.5.2 Installing and Configuring the Dharma SDK ODBC Driver
Client systems that access the Dharma SDK Server must first install the Dharma SDK
ODBC Driver and configure their systems. This section describes:

• Installing the Dharma SDK ODBC Driver

• Editing network configuration files

• Adding an ODBC data source so applications can connect to the Dharma SDK
Server

The Dharma SDK ODBC Driver runs on Microsoft Windows.

2.5.2.1 Installing the Dharma SDK ODBC Driver

To install the Dharma SDK ODBC Driver, follow these steps:

1. Run the setup file in the ODBC_driver directory of the CD-ROM

2. Answer the queries from setup.

To install the ODBC driver on UNIX client machine, follow these steps:

1. Log in as root.

2. Create an account with the user name dharma and log in as dharma.

3. Mount the CD-ROM, specifying an appropriate mount point in the mount
command(for instance, /cdrom).

4. Extract the ODBC driver with a tar command. The name of the tar file to extract
depends on your operating system and license. See Figure 2-1 for the correct file
name.

The Dharma SDK ODBC Driver is distributed as a shared object dhodbcdm.so or a
static library libclient.a, based on the platform. The dhodbcdm.so is to be linked with
the driver manager while libclient.a is to be linked directly with the ODBC
application.

2.5.2.2 Editing Network Configuration Files
Once the Dharma SDK ODBC Driver is installed on a client system, you need to sup-
ply information about what systems the driver will connect to. To do this, you may
need to edit two network configuration files, the services and hosts files.

• This step is only necessary if the server-side services file specified a port number
other than 1990. Edit the services file (typically called services and located in the
2-22 Dharma Systems Inc.

Getting Started
main directory for your TCP package). Add an entry identical to that added in the
server-side services file, as shown in the following example.

Example 2-6: Client-Side Services File Entry for sqlnw

sqlnw 1990/tcp

Be sure to use the same port number as that specified in the server-side services file
(see section 2.4.4.1).

• Edit the hosts file (typically called hosts and located in the main directory for
your TCP package). Add the addresses and names of any hosts you wish to access
with ODBC.

2.5.2.3 Adding the ODBC Data Sources for the Dharma SDK Server
 Use the ODBC Administrator utility to add the names of any Dharma SDK Server
data sources the Dharma SDK ODBC Driver will connect to:

1. Invoke the Microsoft ODBC Administrator from Windows (by default, from the
Control Panel program group). The Administrator's Data Sources dialog box
appears.

2. Click on the System DSN tab. A list of existing system data sources appears.

3. Click on the Add… button. The Create New Data Source dialog box appears.

4. In the Installed ODBC Drivers list box, double-click on the Dharma SDK driver.
The Dharma ODBC Setup dialog box appears.

5. Enter information in the following text boxes:-

- Data Source Name: — A local name for the Dharma SDK Server data source
for use in ODBC connect calls and by the ODBC Administrator.

- Description: — An optional descriptive string.

- Host: — The name of the system where the Dharma SDK Server data source
resides·

- Database: — The database for the process to connect to on the host system
Use the same name you specified when you invoked the mdcreate utility to
create the data dictionary (see section 2.4.5.1).

- User ID: — The user name for the process·

- Password: — The password for the process·

- Service: — The service name used by the server. Leave this field blank
unless the dhdaemon server process was started using the command line and
the command specified the -s argument (see Appendix A). (If it did, specify
the same value here as that used in the -s argument.)

- Options: — An optional implementer specific string specifying additional
connection options. This string has a maximum length of 200 characters. The
contents of this string are implementer dependent.
Dharma Systems Inc. 2-23

User Guide
You must supply the name of the data source. If you omit the host name, database
name, user name, or password, the driver prompts the ODBC application user for that
information when it connects to the data source.

The ODBC Administrator utility updates the ODBC Driver manager registry entry
with the information supplied in the dialog box.

The Dharma SDK ODBC library allows you to link and run an ODBC application on
UNIX. Use the UnixODBC Driver manager on Solaris and Linux which is available
as a free download from http://www.unixodbc.org

To add data sources, edit an initialization file. The ODBC Driver Manager installa-
tion creates an initialization file called odbc.ini that resides in the top-level directory.
You can use any text editor to edit this file. However, you can also use any initializa-
tion file as defined by the ODBCINI environment variable.

1. Add the following entry in the [ODBC Data Sources] section.

 Demo_db=Dharma SDK ODBC Driver

2. Create a new section named for the DSN name you create, and enter information
in the following text boxes:

• Driver: Absolute path to the Dharma SDK ODBC Driver, The Dharma SDK
ODBC Driver resides in the \lib directory of the installation root.

• Description: An optional descriptive string.

• Host: The name of the system where the Dharma SDK Server data source
resides.

• Database: The database for the ODBC application to connect to on the host sys-
tem. Use the same name you specified when you invoked the mdcreate utility to
create the data dictionary (see section 2.3.3).

• User ID: The user name for the database connection.

• Password: The password for the database connection.

• Service: The service name used by the server. Leave this field blank unless the
dhdaemon server process was started using the command line and the command
specified the -s argument (see Appendix A). If the -s argument was used, specify
the same value here as that used in the -s argument.)

• Options: An optional implementer specific string specifying additional connec-
tion options. This string has a maximum length of 200 characters. The contents of
this string are implementer dependent.

The following example shows how an initialization file might look after creating data
sources for the demo_db database associated with the Dharma SDK ODBC Driver:

[ODBC Data Sources]

sample=Dharma Driver

[sample]
2-24 Dharma Systems Inc.

Getting Started
Host=isis

Database= demo_db

User ID=dharma

Password=dummy

Service=sqlnw

Options=conn_info

[ODBC]

Trace=0

TraceFile=/space/dhsdk9/odbc_trace.out

TraceDll=/opt/odbc/lib/odbctrac.so

InstallDir=/opt/odbc

2.5.2.4 Handling of Connection Information
When an ODBC application issues an SQLConnnect call, the Dharma SDK ODBC
driver passes the user name, password and any implementer specific connection infor-
mation to the host system. On the host system, Dharma SDK passes this information
to the underlying storage system for validation.

The ODBC driver gets the user name, password and optional connection information
as follows:

1. By reading the input arguments passed from the application’s call to the SQLCon-
nect or SQLDriverConnect functions

2. If no values are supplied to the function calls, the driver uses the values stored in
the registry for the data source.

3. For Windows clients, if SQL_DRIVER_COMPLETE is specified and after the
first two steps any of the host name, database name, user name or password are
still unspecified, the driver prompts the ODBC application user for that informa-
tion.

If the underlying storage system returns an authentication error, the connection
attempt fails

2.6 DHARMA SDK JDBC DRIVER

2.6.1 Installing the JDBC Driver
To install the Dharma SDK JDBC Driver, follow these steps:

1. Run the setup file in the DHJDBC91 directory of the CD-ROM

2. Answer the queries from setup.
Dharma Systems Inc. 2-25

User Guide

The JDBC driver is supplied as a jar file, DharmaDriver.jar, that allows you to link
and run a JDBC application on UNIX. Extract the JDBC driver with a tar command
from the tar file in DHJDBC90 from the CD-ROM.

See the Dharma SDK JDBC Driver Guide for details on setting up the driver for
access by client applications. The path to the DharmaDriver.jar file should be in the
CLASSPATH to run the JDBC application.

To test if the driver installed successfully, invoke it through a sample Java program.
You must supply a JDBC URL as part of the java invocation command line. The URL
for the Dharma JDBC Driver is of the form:

 jdbc:dharma:T:host_name:db_name:port_number:optional connection information

See the JDBC Driver Guide for more detail on Java URLs and connecting to data-
bases. Supply the name of a host system and database specific to your environment.
For example:

java dharma.jdbc.DharmaTest jdbc:dharma:T:labnt:testdb:4006:opt
info string

The port_number component of the URL is optional if the services file on the server
uses the default port number of 1990.

The optional connection information component of the URL is optional. If it is
specified, the port information must also be specified in order for the string to be
correctly parsed. The maximum length of this component is 200 characters. The
contents of this string are implementer dependent and can include blank spaces but
not the colon(:) character.

2.7 DHARMA SDK .NET DATA PROVIDER

2.7.1 Introduction
This section describes installing the Dharma SDK .NET Data Provider on Microsoft
Windows. Refer to the Dharma SDK .NET Data Provider Guide for more information
on using the .NET Data Provider.

2.7.2 Required Software
The prerequisites for using the Dharma SDK .NET Data Provider DLL are listed
below.

1. Microsoft VC++ .NET version 7.0.9466.

2. Microsoft .NET Framework SDK version 1.1

2.7.3 Installing from a Distribution Kit on any Client System
To install the Dharma SDK .NET Data Provider, follow these steps:

1. Run the setup program present in the DHDOTNET91 directory of the distribution
kit.
2-26 Dharma Systems Inc.

Getting Started
2. Answer the queries from setup.
Dharma Systems Inc. 2-27

User Guide
2-28 Dharma Systems Inc.

Chapter 3

Implementation Strategy

3.1 INTRODUCTION
This chapter describes the overall strategy you use to implement the Dharma SDK
storage interfaces. Because of the large variations in how different proprietary storage
systems store and access data, this section does not focus on any particular implemen-
tation.

The Dharma SDK includes a complete sample implementation ($TPEROOT/odbcsdk/
sample for the C SDK, $TPEROOT/sdk4java/sample for the Java SDK). You can
adapt the sample files as appropriate for implementing the interfaces.

This chapter describes:

Some approaches for mapping proprietary data and proprietary access methods to
relational data and relational indexes

• A suggested series of incremental development stages to implement the storage
interfaces

• For each of the stages, details on the interfaces you need to implement

• Building an ODBC executable after each development stage

• Setting runtime variables that specify attributes of Dharma SDK behavior

3.2 PHILOSOPHY
Note If data in your proprietary storage system is already in relational format,

you can skip this section.

Proprietary storage systems typically store data in a form that does not match standard
relational format. Relational format requires that data be laid out in tabular format,
with a clean separation between data and indexes. Proprietary storage systems, on the
other hand, probably use a more complex format to store data. Also, proprietary stor-
age systems often intersperse data and access methods.

Deciding on a philosophy for mapping proprietary data and access methods to SQL
tables and indexes is an important part of the implementation of the Dharma SDK.
This section discusses different approaches you can consider. Before you implement
the storage interfaces, settle on a particular approach and use it as a guide during
development.

The rest of this section discusses how you can map two common proprietary formats
of data to the relational model.
Dharma Systems Inc. 3-1

User Guide
3.2.1 Two Common Proprietary Formats
One common format for proprietary data is records with repeating fields. In such a
record, there can be one or more occurrences of values in the repeating fields for each
value of a non-repeating field. The following example shows the structure of a record
with repeating fields. In it, the cust_id and cust_name fields are not repeating. The
order_num and order_date fields form a compound repeating field, where there is a
corresponding order_date value for each value in order_num. The compound repeat-
ing field holds information about all of a customer's orders. In addition, there is a sep-
arate repeating field, contacts, that contains the names of multiple contacts at the
customer.

Example 3-1: Proprietary Data: Records With Repeating Fields

Another common format for proprietary data is records that include navigational ele-
ments as part of records. In such a hierarchical record, part of the data contained in
the record is a pointer to multiple occurrences of one or more fields. The following
example shows a hierarchical record representing the repeating fields shown in Exam-
ple 3-1.

Example 3-2: Proprietary Data: Hierarchical Records

3.2.2 Mapping Proprietary Data to a Relational View
One way to map proprietary data with repeating fields or built-in navigational ele-
ments to standard relational tables is to split data into separate tables.

In this approach, split the data so that the repeating fields (or pointers in a hierarchical
record) appear to reside in their own, separate tables. There is a "parent" table that
contains only non-repeating data. There is also a "child" table for each repeating field
or pointer in a hierarchical record.

Note Splitting data in this manner does not mean that the actual data in the pro-
prietary storage system is restructured. It provides a logical relational
view of the data so client applications can issue standard relational que-
ries against it.

The parent table contains a key field (or set of fields) that uniquely identifies a row in
the table. The child table includes this key field to identify a set of child records that
corresponds to the parent record. The following example shows how the relational
tables might appear using this approach.

cust_id cust_name order_num order_date … contact
1 a o1 d1 … c1 c2
2 b o3 d3 o4 d4 … c3

contact

cust_id cust_name orders … contact

order_num order_date
3-2 Dharma Systems Inc.

Implementation Strategy
Example 3-3: Splitting Proprietary Data Records Into Separate Tables

Once you identify key columns, you need to create indexes for them.

3.2.3 Mapping Proprietary Access Methods to Relational Indexes
Typically, a proprietary storage system has built-in mechanisms to quickly access the
key fields of a record. You can easily map these access methods to relational indexes
on the parent tables.

In addition, you will likely need to define additional indexes on child tables. These
indexes may be "virtual" indexes that do not physically exist or indexes that corre-
spond to existing navigational elements.

For instance, the repeating-field example in Example 3-1 was split into a parent table
and two child tables, as shown in Example 3-3. If there is an existing mechanism to
access the cust_id field in the proprietary data, you can create virtual indexes on the
cust_id column in the child tables. This is because the child rows are physically part
of the parent row and accessing the parent row through its index effectively accesses
the child rows as well.

Even though the data is presented relationally as residing in separate tables, they are
part of the same record in the proprietary data format. This means relational joins
between the parent and child table can use virtual indexes on the child tables to give
"pre-joined" performance. Your implementation of the index storage interfaces must
recognize that the virtual indexes indicate that access to a child table is available
through the existing access mechanism on the parent table.

The hierarchical-record example in Example 3-2 also split into the parent and child
records shown in Example 3-3. In this case, too, you can create indexes on the cust_id
column in the child tables, since there are existing navigational elements (the pointers)
to the child tables from the parent table. The navigational elements, in combination
with the physical index, effectively provide indexed access to the child tables.

3.2.4 Developing an Algorithm for Accessing Data
Whatever relational view you ultimately choose to represent data in your proprietary
storage system, you need to implement storage interfaces that take standard relational
constructs and use them to retrieve the correct data.

The implementation must translate references to simple relational tables to the corre-
sponding fields in the proprietary storage system data. In addition, the stub imple-

cust_id cust_name …
1 a …
2 b …

cust_id order_num order_date
1 o1 d1
2 o3 d3
2 o4 d4

cust_id contact
1 c1
1 c2
2 c3

cust_base Table

cust_order Table

cust_contact Table

key

key

key
Dharma Systems Inc. 3-3

User Guide
mentation must have a mechanism for detecting which of those fields are repeating (or
pointers in a hierarchical record).

3.3 STAGES OF IMPLEMENTATION
You can simplify implementation of the Dharma SDK storage interfaces by dividing
development into stages. Each implementation stage provides an increasing level of
access or functionality to the proprietary storage system.

By building the dhdaemon executable for your implementation at each stage, you can
verify incremental completion of the functionality for that stage.Compile the java files
at each stage to verify the functionality of of your Java stub implementation.

The following table describes the implementation stages and lists which storage inter-
faces you need to implement for each stage. For read access, only stages 1 through 3
are required.

Table 3-1: Implementation Stages for Developing the Storage Stubs

Stage 1 Metadata Access

Stage 1 maps data in the proprietary storage system to standard relational tables and loads the resulting
table definitions into the system catalog. Stage 1 also verifies your software build environment by linking
your storage system code with the storage interfaces and Dharma SDK library to create an dhdaemon
executable for the first time for C stubs. Java files are compiled and your software build environment is ver-
ified for Java stubs. After stage 1 implementation, you can issue queries on system tables to retrieve data
on tables in the proprietary storage system.

Storage Interfaces to Implement for Stage 1

C stubs Java Stubs Description

dhcs_rss_init StorageEnvironment.createStor-
ageEnvironment, StorageEnvi-
ronment.createStorageManager
Handle

Initializes a connection to the proprietary stor-
age system and performs any required user
authentication.

dhcs_add_table StorageManagerHandle.cre-
ateTable

For stage 1 implementation, generates a table
identifier that corresponds to an existing table
name. Additional implementation required for
stage 5 support.

dhcs_rss_cleanup StorageEnvironment.close, Stor-
ageManagerHandle.close

Closes the proprietary storage system and per-
forms any required cleanup.

Stage 2 Read Access

Stage 2 provides read access to data in the proprietary storage system but does not take advantage of
indexes or other performance-enhancing access methods that may be available in the proprietary storage
system.

Storage Interfaces to Implement for Stage 2

C stubs Java Stubs Description

dhcs_alloc_tid RecordID constructor Allocates memory to store a tuple identifier and
initializes the tuple identifier.

dhcs_free_tid Frees memory from a tuple identifier.
3-4 Dharma Systems Inc.

Implementation Strategy
dhcs_assign_tid RecordID.setRecordID(Recor-
dID)

Copies the value for a tuple identifier.

dhcs_compare_tid RecordID.compareRecordID Compares two tuple identifiers and returns a
value indicating equality or relative size.

dhcs_char_to_tid RecordID.setRecordID(String) Converts a character string to a tuple identifier.

dhcs_tid_to_char RecordID.getRecordID Converts a tuple identifier to a character
string.

dhcs_tpl_scan_ope
n

StorageManagerHandle.getTa-
bleScanHandle

Opens a table for scanning when no indexes
are available.

dhcs_tpl_scan_fetc
h

TableScanHandle.getNex-
tRecord

Fetches the next record from a table.

dhcs_tpl_scan_clo
se

TableScanHandle.close Closes a table that was opened for scanning.

dhcs_get_error_me
sg

DharmaStorageException Returns the error message for any error code
generated by the storage manager. As pro-
vided, the interface generates the Not yet
implemented message whenever it is called.
Subsequent stages require continued imple-
mentation as the storage manager generates
additional error codes.

dhcs_tpl_open StorageManagerHandle.getTa-
bleHandle

Opens a table by allocating memory for a table
handle.

dhcs_tpl_close TableHandle.close Closes a table by deallocating the table han-
dle.

dhcs_tpl_get_card TableHandle.getCardinality Returns the cardinality(number of tuples) of a
table. Implementation of this stub function is
optional.

Stage 3 Indexed Access

Stage 3 implements complete read access to data in the proprietary storage system. This stage requires
mapping existing indexes and proprietary access methods to standard relational indexes

For environments that do not require write access, access to long data types or do not support storage
system functions and procedures, stage 3 is the final implementation stage.

Storage Interfaces to Implement for Stage 3

C stubs Java Stubs Description

dhcs_rss_get_info StorageManagerHandle.getStor-
ageManagerInfo

In stage 3, returns details on how a storage
manager supports indexed access. In stage 4,
indicates how the storage manager processes
updates to indexes.

dhcs_create_index StorageManagerHandle.cre-
ateIndex

For stage 3 implementation, only generates an
index identifier that corresponds to an existing
index name. Additional implementation
required for stage 5 support.

Table 3-1: Implementation Stages for Developing the Storage Stubs
Dharma Systems Inc. 3-5

User Guide
dhcs_ix_scan_ope
n

StorageManagerHandle.getIn-
dexScanHandle

Opens an index for scanning.

dhcs_ix_scan_fetc
h

IndexScanHandle.getNex-
tRecord

Fetches the next record in an index scan.

dhcs_ix_scan_clos
e

IndexScanHandle.close Closes an index which was opened for scan-
ning.

dhcs_tpl_fetch TableHandle.getRecord Fetches a specific record from a table.

dhcs_get_error_me
sg

DharmaStorageException Continued implementation: Returns the error
message for error codes generated by the
storage manager.

dhcs_ix_get_sel IndexHandle.getSelectivity Returns an estimate of the selectivity of the
index. Implementation of this stub function is
optional.

Stage 4 Write Access

Stage 4 provides the ability to insert, update, and delete data in the proprietary storage system. Stage 4
implementation is optional.

Storage Interfaces to Implement for Stage 4

C stubs Java Stubs Description

dhcs_rss_get_info StorageManagerHandle.getStor-
ageManagerInfo

(Initial implementation in stage 3.) In stage 4,
indicates how the storage manager processes
updates to indexes.

dhcs_tpl_insert TableHandle.insert Inserts a record into a table.

dhcs_tpl_delete TableHandle.delete Deletes a record from a table.

dhcs_tpl_update TableHandle.update Updates values in an existing table record.

dhcs_ix_open StorageManagerHandle.getIn-
dexHandle

Opens an index for updating.

dhcs_ix_close IndexHandle.close Closes an index after updating.

dhcs_ix_insert IndexHandle.insert Inserts a record into an index.

dhcs_ix_delete IndexHandle.delete Deletes a record from an index.

dhcs_begin_trans StorageEnvironment.beginTrans-
action

Starts a transaction.

dhcs_commit_trans StorageEnvironment.commit-
Transaction

Commits a transaction.

dhcs_abort_trans StorageEnvironment.rollback-
Transaction

Aborts, or rolls back, a transaction.

dhcs_get_error_me
sg

DharmaStorageException Continued implementation: Returns the error
message for error codes generated by the
storage manager.

Stage 5 Data Definition

Table 3-1: Implementation Stages for Developing the Storage Stubs
3-6 Dharma Systems Inc.

Implementation Strategy
Stage 5 implements the ability to create new tables and indexes in the proprietary storage system. Stage
5 implementation is optional.

Storage Interfaces to Implement for Stage 5

C stubs Java Stubs Description

dhcs_add_table StorageManagerHandle.cre-
ateTable

(Initial implementation in stage 1.) For stage 5
implementation, creates a new table in the pro-
prietary storage system.

dhcs_drop_table StorageManagerHandle.dropT-
able

Deletes a table from the proprietary storage
system.

dhcs_create_index StorageManagerHandle.creatIn-
dex

(Initial implementation in stage 3.) For stage 5
implementation, creates a new index in the
proprietary storage system.

dhcs_drop_index StorageManagerHandle.dropIn-
dex

Deletes an index from the proprietary storage
system.

dhcs_get_error_me
sg

DharmaStorageException Continued implementation: Returns the error
message for error codes generated by the
storage manager.

Stage 6 Storage System Scalar Functions and Procedures

Stage 6 provides the ability to call scalar functions and procedures that are defined in the proprietary stor-
age system. Stage 6 implementation is optional.

Storage Interfaces to Implement for Stage 6

C stubs Java Stubs Description

dhcs_get_procinfo StorageManagerHandle.getPro-
cedureMetaData

Returns information about storage system sca-
lar functions and procedures.

Stage 7 Long Data Type Support

Stage 7 provides access to unstructured character and binary data in columns defined as LONG VAR-
CHAR or LONG VARBINARY. The characteristics of such long data-type data (or simply "long data") are
completely dependent on the implementation. Stage 7 implementation can be limited to long data access,
or include the ability to insert and delete long data in the proprietary storage system. Stage 7 implementa-
tion is optional.

Storage Interfaces to Implement for Stage 7

C stubs Java Stubs Description

dhcs_get_data LongDataHandle.getLongVar-
CharData
LongDataHandle.getLongVarBi-
naryData

Retrieves a segment of a long field value.

dhcs_put_data LongDataHandle.putLongVar-
CharData
LongDataHandle.putLongVarBi-
naryData

Stores a segment of a long field value.

dhcs_put_hdl Copies data from one long-field handle to
another.

Table 3-1: Implementation Stages for Developing the Storage Stubs
Dharma Systems Inc. 3-7

User Guide
3.3.1 Stage 1: Metadata Access
Stage 1 loads and accesses metadata.

As mentioned in Chapter 2, metadata are definitions for SQL tables and indexes that
map the structure of data in the proprietary storage system to standard relational
forms.

The first step in stage 1 is to write an SQL script that expresses the mapping of propri-
etary data to relational tables. The isql utility uses this script to actually create the
tables and indexes that correspond to the structure of data in the proprietary storage
system. As you implement the storage interfaces, the script provides a detailed
description of the relational tables that client applications will access.

Stage 1 implements the following functionality:

• Connection to the proprietary storage system and optional security authentication

• Generation of table identifiers that correspond to names of existing tables in the
proprietary storage system to support metadata loading

• Disconnection from the proprietary storage system

3.3.1.1 Creating md_script, the SQL Script to Load Metadata
The script you write to load metadata serves two purposes:

dhcs_get_error_me
sg

DharmaStorageException Continued implementation: Returns the error
message for error codes generated by the
storage manager.

Stage 8 Dynamic Metadata Support

Stage 8 allows implementations to dynamically provide details about tables and indexes that reside in the
proprietary storage system. Stage 8 implementation is optional.

Storage Interfaces to Implement for Stage 8

C stubs Java Stubs Description

dhcs_get_metainfo StorageManagerHandle.getNum-
berOfTables

Returns the number of tables that the user can
access, and whether subsequent calls to
dhcs_get_tblinfo will return detail on those
tables sorted by table name.

dhcs_get_tblinfo StorageManagerHandle.getTa-
bleInfo

Returns detail on a table.

dhcs_get_idxinfo StorageManagerHandle.getIn-
dexInfo, StorageManagerHan-
dle.getIndexColumInfo

Returns detail on an index and its column infor-
mation.

dhcs_get_colinfo StorageManagerHandle.getTa-
bleColumnInfo

Returns detail on columns in a table.

dhcs_get_error_me
sg

DharmaStorageException Continued implementation: Returns the error
message for error codes generated by the
storage manager.

Table 3-1: Implementation Stages for Developing the Storage Stubs
3-8 Dharma Systems Inc.

Implementation Strategy
• You use it during development to create the metadata against which you imple-
ment storage interfaces

• It becomes part of the release kit installed on other systems with the proprietary
storage system

The Dharma SDK development components include a sample script you can adapt to
create your own script that loads metadata for the proprietary storage system. The
template is in the file md_template ($TPEROOT/odbcsdk/sample/md_template,
$TPEROOT/sdk4java/sample/md_template).

Create your script in a file called md_script. (The file name is important only because
the instructions for creating a release kit in Chapter 4 specify that file name.)

The script contains CREATE TABLE and INDEX statements with the
STORAGE_ATTRIBUTES 'METADATA_ONLY' clause. This clause directs the
SQL engine to insert metadata into the data dictionary without requiring the propri-
etary storage system to create an empty table or index. The table or index name used
in the CREATE statement must be the same as an existing table or index in the propri-
etary storage system.

The following example shows an excerpt from the sample script that illustrates the
CREATE TABLE and CREATE INDEX syntax.

Example 3-4: Script Template for Loading Metadata

$ more odbcsdk/sample/md_template

--

--

-- Template file for loading metadata for tables that already

-- exist in the underlying storage system.

--

--

CREATE TABLE test1(

 col1 integer,

 col2 char(32),

 col3 date

)

 STORAGE_ATTRIBUTES 'METADATA_ONLY';

CREATE INDEX test1_idx ON test1(col1)

 STORAGE_ATTRIBUTES 'METADATA_ONLY';

3.3.1.2 Initializing Connections to the Proprietary Storage System
When the SQL engine starts, it calls an initialization interface (dhcs_rss_init, Storag-
eEnvironment.createStorageEnvironment) . This interface is called only when the
SQL engine starts, and it is the only function called when it starts. The specific pro-
cessing done by the routine depends on the requirements of the proprietary storage
system. In general, the routine must:
Dharma Systems Inc. 3-9

User Guide
• Initialize a connection to the proprietary storage system. This may include open-
ing files, loading data structures, or other steps specific to the particular propri-
etary storage system.

• Perform any desired authentication based on the user name and password argu-
ments the SQL engine passes to it. The SQL engine does no authentication of its
own.

• Process the information, if any, passed in the optional connection information
argument, and take any appropriate action.

3.3.1.3 Partially Implementing dhcs_add_table to Return Table Identifiers
As discussed previously, you need to choose an approach for representing the data in
the proprietary storage system as a series of relational tables. Once you do that, you
use the isql utility to load metadata in the system tables.

The isql utility processes the SQL script file. To support processing this script
through isql, you partially implement the interface to add tables (dhcs_add_table,
StorageManagerHandle.createTable). (If you choose to implement stage 5, you then
provide complete support for table creation.)

When the SQL engine calls the stubs (dhcs_add_table, StorageManagerHandle.cre-
ateTable) to load metadata, it sets the metadata-only flag to TRUE and provides the
name of an existing table in the proprietary storage system. The implementation must
generate a unique table identifier that the SQL engine associates with the table name.
The value of the identifier must be from 1000 to 32767.

The implementation must also keep track of table identifiers and their corresponding
table names. The SQL engine passes only the identifier, not the name, in subsequent
calls. It is the implementation's responsibility to associate the identifier with the cor-
rect table.

See section 5.2.1 for details on the dhcs_add_table interface. See “createTable” on
page 86.for details on the StorageManagerHandle.createTable method.

3.3.1.4 Closing Connections With dhcs_rss_cleanup
The SQL engine calls the dhcs_rss_cleanup, StorageEnvironment.close interface
when an application issues the SQLDisconnect call. The specific steps associated
with this call depend on your proprietary storage system, but could include deallocat-
ing memory and closing files.

3.3.1.5 Testing Stage 1 Implementation
To test stage 1 implementation, you need to first do the following:

• Link your storage system code with the storage interfaces and Dharma SDK
library to create an dhdaemon executable for the first time.

• Execute the SQL script using isql (see Appendix A).

Once you do that, you can issue queries against the system tables (see Appendix B for
details of the system tables). Example 3-2 shows invoking isql to do a simple query
on one of the system tables to confirm completion of stage 1 implementation. The
3-10 Dharma Systems Inc.

Implementation Strategy
query accesses the systables system table to retrieve some details on any tables that
are not system tables (WHERE TBLTYPE <> 'S'). The results show that metadata on
a single table, test1, was loaded into the Dharma SDK.

Example 3-5: Stage 1 Completion: Confirming Access to Metadata

$ isql proprietary_db

 Dharma/isql Version 09.01.0000

 Dharma Systems Inc (C) 1988-2005.

 Dharma Systems Pvt Ltd (C) 1988-2005.

/dharma/bin/dhdaemon.exe <SQL SERVER 28999> -d proprietary_db -
h 415136 sqlnw_ks

> SELECT TBL, ID, CREATOR, OWNER, TBLTYPE

FROM DHARMA.SYSTABLES WHERE TBLTYPE <> 'S';

tbl id creator owner tbltype

--- -- ------- ----- -------

test1, 1000, dharma, dharma, T

Tuple selected = 1

>

3.3.2 Stage 2: Read Access
Stage 2 provides simple read access to data in the proprietary storage system. Stage 2
implements the following additional functionality:

• Generation and manipulation of tuple identifiers that point to specific rows of data
in the proprietary storage system

• Sequential scan of rows in tables in the proprietary storage system

• Generation of implementation-specific error messages

• Opening and closing tables

The following sections provide some more detail on how you approach implementing
these routines. Figure 3-1and Figure 3-2 show how the SQL engine makes a series of
calls to these routines for two types of SQL SELECT statements:

• A simple statement that refers to one table

• A more complex statement that joins data from two tables
Dharma Systems Inc. 3-11

User Guide
Figure 3-1: Calls to Retrieve Data in Stage 2: Simple SELECT

dhcs_rss_init, StorageEnvironment.
CreateStorageEnvironment,

StorageEnvironment.
createStorageManagerHandle

dhcs_rss_cleanup,
StorageEnvironment.close,

StorageManagerHandle.close

dhcs_tpl_scan_close,
TableScanHandle.close

dhcs_tpl_scan_fetch,
TableScanHandle.getNextRecord

dhcs_tpl_scan_open,
StorageManagerHandle.getTableSca

Handle

No
Yes

More Data?

SELECT C1 from T1 WHERE C1 >=
100;
3-12 Dharma Systems Inc.

Implementation Strategy
Figure 3-2: Calls to Retrieve Data in Stage 2: Two-Table Join

3.3.2.1 Implementing the Tuple Identifier Interfaces
A tuple identifier, or tid (note: In the Java implementation, tuple identifiers are imple-
mented through the RecordID class), uniquely identifies a record in the proprietary
storage system. The implementation must return a tuple identifier when it retrieves
data from the proprietary storage system.

Chapter 5 describes the tuple identifier interfaces (Chapter 6 describes the RecordID
class). These interfaces are utility functions that the implementation itself as well as
the SQL engine call routinely.

The format of a tuple identifier is specific to the proprietary storage system. In gen-
eral, the implementation must provide the following functionality through the inter-
faces:

• Allocate and free memory to store tid values

• Copy and compare tid values

dhcs_rss_init, StorageEnvironment.
CreateStorageEnvironment,

StorageEnvironment.createStorageManager
Handle

dhcs_tpl_scan_open ,
StorageManagerHandle.getTableScanHa

ndle on T2

No Yes

SELECT T1.C1, T1.C2, T2.C1, T2.C2
FROM T1, T2 WHERE T1.C1 = T2.C1

dhcs_tpl_scan_close ,
TableScanHandle.close on T1

dhcs_tpl_scan_open ,
StorageManagerHandle.getTableScanHa

ndle on T1

dhcs_tpl_scan_fetch ,

TableScanHandle.getNextRecord on T2

dhcs_tpl_scan_fetch ,

TableScanHandle.getNextRecord on T1

Yes
No

dhcs_tpl_scan_close ,
TableScanHandle.close on T2

dhcs_rss_cleanup,
StorageEnvironment.close,

StorageManagerHandle.close

More Data? More Data?
Dharma Systems Inc. 3-13

User Guide
• Convert tid values to and from character strings (the maximum allowable length
of the character-string version of tids is 255)

The sample illustrates implementation of these interfaces with a tid of type char.

3.3.2.2 Retrieving Data Through Table Scans
To retrieve records when no indexes are available, the SQL engine opens a table scan,
fetches records from it and then closes the scan. It retrieves each record and compares
it with any conditions specified in the SQL statement until the proprietary storage sys-
tem indicates no more data is available.

When it opens a scan (dhcs_tpl_scan_open, StorageManagerHandle.getTableScan-
Handle), the SQL engine passes the table identifier for the table of interest. The
implementation needs to open files or load the required data structures that correspond
to the table. The routine must return a handle for the table scan and point to the first
record in the table (in the java implementation, the class object returned is the handle).

The SQL engine uses this scan handle (or class) on each call to fetch a record
(dhcs_tpl_scan_fetch, TableScanHandle.getNextRecord) (see Chapters 5 & 6). In
addition, it may pass a pointer to a list of field values, a pointer to a tuple identifier, or
both. The elements of the list indicate which table columns are of interest.

To fetch a record, implementations should:

• If there are no more records in the table, return SQL_NOT_FOUND.

• Check whether the list of field values is empty (a null pointer, or an empty list). If
the list is not empty, supply the field values for the table columns specified in the
list. Before writing data to the passed field-values structures, the implementation
must convert values to host format. The header file $TPEROOT/odbcsdk/src/
dhcs.h specifies the host format for all the SQL data types.

• Check whether the pointer to the tid is null. If it is not, supply the tid for the cur-
rent record.

• Advance the scan to the next record.

The SQL engine makes an explicit call to close the scan (dhcs_tpl_scan_close,
TableScanHandle.close). In a C implementation it passes the scan handle to indicate
which scan the implementation should close. The implementation frees the scan han-
dle and performs any other operations appropriate to the proprietary storage system.
In a Java implementation, the class member function is called and appropriate action
is taken.

3.3.2.3 Returning Implementation-Specific Error Messages
The storage interface routine (dhcs_get_error_mesg, DharmaStorageExceptiongetEr-
rorMessage) provides a mechanism for implementations to generate error messages
specific to the proprietary storage system.

The SQL engine calls error message handler when it receives an error code generated
by the storage manager. The storage manager can return such error codes during exe-
cution of any routine, through dhcs_status_t or DharmaStorageException. See Chap-
ters 5 & 6 for details.
3-14 Dharma Systems Inc.

Implementation Strategy
3.3.2.4 Opening and Closing Tables
The SQL engine uses table handles for internal operations. To complete stage 2,
implement the storage interfaces to open and close table handles (dhcs_tpl_open and
dhcs_tpl_close, StorageManagerHandle.getTableHandle, TableHandle.close) that
allocate and free table handles:

• When the SQL engine opens a table handle it passes the table identifier generated
during table creation (dhcs_tpl_add_table, StorageManagerHandle.createTable).
The routine must identify and initialize the corresponding table in the proprietary
storage system and return a handle for the table.

• The SQL engine makes an explicit call to closes a table handle (dhcs_tpl_close,
TableHandle.close). In the C implementation the SQL engine passes the table
handle generated by the corresponding call to dhcs_tpl_open. The close routine
frees the handle.

3.3.2.5 Supplying Table Cardinality Data To The Optimizer
The SQL engine can be influenced by the storage system in how it optimizes and
executes SQL statements from users. The optimizer plays an important role in
reducing the execution time of SQL queries by minimizing the number of requests
that are made to the storage system during the execution phase and minimizing the
number of operations that are preformed with the SQL engine. The stub interfaces
dhcs_tpl_get_card, TableHandle.getCardinality, return information to the SQL
engine about the cardinality (the number of tuples) of a table. The optimizer uses this
information along with the index selectivity figures to order the set of tables in the
query in the optimal join order. If a storage system is not capable of generating the
table cardinality information, it should return responses that indicate that the SQL
engine should use default values.

3.3.2.6 Testing Stage 2 Implementation
To test stage 2 implementation, you can use the isql utility. Issue queries such as the
following on tables in the proprietary database:

3.3.3 Stage 3: Indexed Access
Stage 3 implements indexed access to data in the proprietary storage system.

This stage requires mapping existing indexes and proprietary access methods to stan-
dard relational indexes.

The SQL engine asks implementations provide details on the properties of their
indexes (dhcs_rss_get_info, StorageManagerHandle.getStorageManagerInfo) .
Among other characteristics, responses to these queries indicate which comparison
operations (such as equal or greater than) the proprietary storage system can support
through indexed retrieval.

SELECT * FROM T1; This statement initiates a table scan on T1.

SELECT COUNT(*) FROM T1; This statement checks implementation of the tuple
identifier interfaces.
Dharma Systems Inc. 3-15

User Guide
In addition to providing for responses to requests about index properties, stage 3
implements the following additional functionality:

• Generation of index identifiers that correspond to names of existing indexes in the
proprietary storage system (dhcs_create_index, StorageManagerHandle.createIn-
dex)

• Use of index scans instead of table scans (dhcs_ix_scan_open,
dhcs_ix_scan_fetch, and dhcs_ix_scan_close, StorageManagerHandle.getIndexS-
canHandle, IndexScanHandl.getNextRecord, IndexScanHandle.close). Index
scans retrieve the tuple identifiers for rows that satisfy query criteria. If an index
for a table exists, a SELECT statement that specifies any of the supported compar-
ison operators results in calls to index scan interfaces instead of the table scan
interfaces.

• Support for non-scan table retrieval (dhcs_tpl_open, dhcs_tpl_fetch, and
dhcs_tpl_close, StorageMangerHandle.getTableHandle, TableHandle.getRecord,
TableHandle.close). Instead of time-consuming table scans, the SQL engine
passes the tuple identifiers obtained from the index scan to these interfaces, which
directly retrieve the rows.

The following sections provide some more detail on how you approach implementing
these routines. If you do not require write access to your proprietary storage system,
stage 3 is the final implementation stage.

The following figure shows how the SQL engine makes a series of calls after indexed
access has been implemented.
3-16 Dharma Systems Inc.

Implementation Strategy
Figure 3-3: Calls to Retrieve Data in Stage 3

3.3.3.1 Responding to Index Property Information Calls
The SQL engine makes calls (dhcs_rss_get_info, StorageManagerHandle.getStorage-
ManagerInfo) to obtain details on the properties of an implementation's index support.
It makes these calls repeatedly with different info type arguments. Most info types
require a Boolean response (true or false); when requesting supported comparison
operators (IX_PUSH_DOWN_RESTRICTS) a list is returned.

The following table summarizes the info types. See the Info Type Values discussion in
section 5.9.3 for details. Note: For the Java implementation, the info types do not
have the DHCS_ prefix.

dhcs_rss_init,
StorageEnvironment.createStor

ageEnvironment,
StorageEnvironment.createStor

ageManagerHandle

dhcs_ix_scan_open,
StorageManagerHandle.getIndexScanHandl

No Yes

More Data?

dhcs_tpl_open,
StorageManagerHandle.getTableHa

ndle on T1

dhcs_ix_scan_fetch ,
IndexScanHandle.getNextRecord on

T1

dhcs_tpl_fetch ,
TableHandle.getRecord on T1

dhcs_ix_scan_close,
IndexScanHandle.close on

T1

dhcs_tpl_close,
TableHandle.close on T1

dhcs_rss_cleanup,
StorageEnvironment.close,

StorageManagerHandle.close

SELECT C1 FROM T1 WHERE C1 >= 100;
Dharma Systems Inc. 3-17

User Guide
Table 3-2: Info Type Properties Describing Index Support

3.3.3.2 Partially Implementing index creation to Return Index Identifiers
The process for implementing an abbreviated version of the index creation routine
(dhcs_create_index, StorageManagerHandle.createIndex) is parallel to implementing
support for loading table metadata (dhcs_add_table, StorageManagerHandle.cre-
ateTable), as described in Chapter 5:

• Change the md_script to add CREATE INDEX statements that will load metadata
for SQL indexes that correspond to the structure of indexes or other navigational
elements in the proprietary storage system (see Chapter 5).

• Partially implement the index creation routine (dhcs_create_index, StorageMan-
agerHandle.createIndex) to return index identifiers. The routine needs to gener-
ate an index identifier with a value from 1000 to 32767. As with table identifiers,
the implementation must also keep track of index identifiers and their correspond-
ing index names.

Info Type Argument Meaning

DHCS_IX_ALL_COMPONENTS Specific to multi-component indexes: When performing
an index scan, whether search values must be provided
for all components.

DHCS_IX_COMPUTE_AGGR Whether the storage manager supports the SQL MIN
and MAX aggregate functions.

DHCS_IX_FETCH_ALL_FIELDS Whether the storage system is able to return all of the
fields of the record, and not just the index component
fields, in response to an index scan
(dhcs_ix_scan_fetch, IndexScanHandle.getNex-
tRecord). The SQL engine takes advantage of this
property to avoid calls to the table interface to retrieve
records (tpl_fetch, TableHandle.getRecord). See the
discussion in Chapters 5 & 6 for these interfaces.

DHCS_IX_PUSH_DOWN_REST
RICTS

Comparison operators which the storage manager can
process through index scans (as opposed to being pro-
cessed internally by the SQL engine). Refer to Table 5-
2: on page 5-38 (C stubs) or Table 6-2 on page 94(Java
stubs).

DHCS_IX_SCAN_ALLOWED Whether indexes of the specified type support index
scans.

DHCS_IX_SORT_ORDER Whether a scan on the index returns records in the
order of the index key.

DHCS_IX_TID_SORTED Whether the index returns records sorted by tuple iden-
tifier.

DHCS_IX_UPD_REQUIRED (Not applicable to stage 3.) Whether the SQL engine
must update indexes through separate calls to the index
interfaces (dhcs_ix_insert or dhcs_ix_delete, IndexHan-
dle.insert, IndexHandle.delete) after an insert, update,
or delete operation on a table.
3-18 Dharma Systems Inc.

Implementation Strategy
See Chapter 5 for details on the dhcs_create_index interface. See Chapter 6 for details
on the StorageManagerHandle.createIndex interface.

3.3.3.3 Retrieving Data Through Index Scans
When it processes a SELECT statement that specifies any of the supported compari-
son operators, the SQL engine checks the sysindexes catalog table to see if there are
indexes for the table. If there is an index, the engine calls the index interface to open
an index scan (dhcs_ix_scan_open, StorageManagerHandle.getIndexScanHandle).

Implementation of index scan handle opening (dhcs_ix_scan_open, StorageManager-
Handle.getIndexScanHandle) is parallel to opening table scans (dhcs_tpl_scan_open,
StorageManagerHandle.getTableScanHandle) in the following ways:

• The SQL engine passes the index identifier for the index of interest (as well as the
table identifier).

• The implementation needs to open files or load the required data structures that
correspond to the index. (Note: The implementation should make use of any
available storage systems caching mechanisms.)

• The implementation generates a handle for the index scan.

However, for index scan opens, the SQL engine also passes an operator argument and
any comparison values that the implementation must process. This operator/compari-
son-value combination corresponds to an SQL predicate and indicates a condition that
is true or false about a row or group of rows (such as WHERE C1 >= 100).

The SQL engine queries storage systems to see which comparison operators they sup-
port for a given index type (dhcs_rss_get_info with the info type argument
DHCS_IX_PUSH_DOWN_RESTRICTS (Refer to Table 5-2: on page 5-38), Storage-
ManagerHandle.getStorageManagerInfo with the infoType argument
IX_PUSH_DOWN_RESTRICTS(Refer to Table 6-2: on page 6-94)). Implementa-
tions must at least support a forward index scan (DHCS_IXOP_FIRST,
IXOP_FIRST). After opening an index scan, the implementation must position the
scan to the first record in the index that satisfies the operator argument based on the
supplied comparison values. (Note: This can be done in the scan opening routine or
in the fetch routine prior to the first fetch. The details are up to the implementation.)

If the query requires field values that are not available through the index, the SQL
engine opens the table (dhcs_tpl_open, StorageManagerHandle.getTableHandle).
When it opens the table, the SQL engine passes the table identifier generated when the
table was created (dhcs_tpl_add_table, StorageManagerHandle.createTable). The
routine must identify and initialize the corresponding table in the proprietary storage
system and return a handle for the table. The SQL engine passes the table handle to
calls during subsequent fetch operations for the C stubs or uses the class object to call
the appropriate methods for the Java stubs.

When it calls index fetch (dhcs_ix_scan_fetch, IndexScanHandle.getNextRecord), the
SQL engine supplies the same operator and comparison values as it did to its call to
open the scan (dhcs_ix_scan_open, StorageManagerHandle.getIndexScanHandle).
The implementation supplies the values for the requested fields, supplies the tuple
identifier for the record, and advances the scan to the next index record that satisfies
Dharma Systems Inc. 3-19

User Guide
the predicate criteria. If no more records meet the criteria, the implementation returns
SQL_NOT_FOUND.

Before calling index fetch again, the SQL engine may fetch the record from the table
(dhcs_tpl_fetch, TableHandle.getRecord) if it needs column values not available
through the index. These routines implement a non-scan operation, meaning they
operate on a single row of a table that is specified through a tuple identifier obtained
through an index scan and passed to the routine by the SQL engine. The implementa-
tion retrieves the appropriate row from the table, based on the supplied tuple identifier,
and fills in the requested values.

When the query returns no more data, the SQL engine explicitly closes open handles (
dhcs_ix_scan_close and dhcs_tpl_close, IndexScanHandle.close and TableHan-
dle.close) .

3.3.3.4 Supplying Index Selectivity Data to the Optimizer

The stub interfaces dhcs_ix_get_sel, IndexHandle.getSelectivity, return information to
the SQL engine about the selectivity (the number of tuples) of an index. The optimizer
uses selectivity information in deciding which of the restrictions to be pushed down to
the storage system. The restriction which provides the least selectivity is pushed
down. The optimizer uses the selectivity figures along with the cardinality to order the
set of tables in the query tin the optimal join order. If a storage system is not capable
of generating the index selectivity information, it should return responses that indicate
that the SQL engine should use default values.

3.3.3.5 Testing Stage 3 Implementation
To test stage 3 implementation, you can use the isql utility. Issue queries such as the
following on tables in the proprietary database:

3.3.4 Stage 4: Write Access
Stage 4 provides the ability to insert, update, and delete data in the proprietary storage
system. Stage 4 implementation is optional, and adds the following functionality:

• The ability to add new records (dhcs_tpl_insert and dhcs_ix_insert, TableHan-
dle.insert and IndexHandle.insert), delete records (dhcs_tpl_delete and
dhcs_ix_delete, TableHandle.delete and IndexHandle.delete), and modify existing
records (dhcs_tpl_update, dhcs_ix_insert, and dhcs_ix_delete, TableHan-
dle.update, IndexHandle.insert and IndexHandle.delete)

SELECT * FROM T1
WHERE C1 = 'whatever';

Presuming there is an index on the c1 column and that
the proprietary storage system supports the = compari-
son operator, this statement initiates an index scan on
the index and a non-scan fetch on T1.

SELECT T1.C1, T1.C2,
 T2.C1, T2.C2
FROM T1, T2
WHERE T1.C1 = T2.C1;

Presuming there are indexes on the t1.c1 and t2.c1 col-
umns, and that the proprietary storage system supports
the = comparison operator, this statement initiates
scans on virtual indexes.
3-20 Dharma Systems Inc.

Implementation Strategy
• Transaction management (dhcs_begin_trans, dhcs_commit_trans, and
dhcs_abort_trans, StorageEnvironment.beginTransaction, StorageEnviron-
ment.commitTransaction and StorageEnvironment.rollbackTransaction)

The specific routines the SQL engine calls during update operations depends on
whether the proprietary storage system requires the SQL engine to manage updates to
indexes when corresponding table rows are updated. The SQL engine queries the
implementation to determine its requirements (dhcs_rss_get_info with the
DHCS_IX_UPD_REQUIRED info type argument, StorageManagerHandle.getStor-
ageManagerInfo with the IX_UPD_REQUIRED infoType argument).

If implementations return TRUE, the SQL engine explicitly calls separate routines
(dhcs_ix_open, dhcs_ix_delete, dhcs_ix_insert, and dhcs_ix_close, StorageManager-
Handle.getIndexHandle, IndexHandle.delete, IndexHandle.insert, IndexHandle.close)
to update the appropriate index row when a table row is updated. If implementations
return FALSE, the SQL engine never calls those routines and presumes the proprietary
storage system updates indexes.

The next two figures show the series of calls the SQL engine makes to process two
typical update situations:

• A simple INSERT statement that specifies values directly

• An INSERT statement that retrieves values from another table (where both tables
have indexes)
Dharma Systems Inc. 3-21

User Guide
Figure 3-4: Calls to Store Data in Stage 4: Simple INSERT Statement

dhcs_rss_init,
StorageEnvironment.createStorageEnv

ironment,
StorageEnvironment.createStorageMa

nagerHandle

INSERT INTO T1 (C1)VALUES ('a');

dhcs_ix_insert, IndexHandle.insert on T1

dhcs_tpl_insert,
TableHandle.insert on T1

dhcs_tpl_open,
StorageManagerHandle.getTableHandle on

T1

 dhcs_ix_open on T1

dhcs_tpl_close ,
TableHandle.close on T1

dhcs_ix_close,
IndexHandle.close on T1

Only called if implementation sets,
DHCS_IX_UPD_REQUIRED
StorageCodes. IX_UPD_REQUIRED

 =
3-22 Dharma Systems Inc.

Implementation Strategy
Figure 3-5: Calls to Store Data in Stage 4: Inserting Records from Another Table

3.3.4.1 Adding, Modifying, and Deleting Records
As shown in Figure 3-4, the SQL engine first inserts a records into the table (
dhcs_tpl_insert, TableHandle.insert). It passes a list of field values and, for the C
stubs, a table handle. The implementation stores the record in the table and generates
a tuple identifier.

If the implementation requires explicit index updation, the SQL engine next inserts an
index record (dhcs_ix_insert, IndexHandle.insert) and passes the tuple identifier just
generated and values for the index components. The implementation stores the values
as a new index record.

The SQL engine follows a similar process for UPDATE statements to modify values
in an existing record. It updates the table (dhcs_tpl_update, TableHandle.update),

INSERT INTO T1 (C1)

SELECT C1 FROM T2 WHERE C1 >= 100;

dhcs_rss_cleanup,
StorageEnvironment.close,

StorageManagerHandle.close

dhcs_tpl_close,
TableHandle.close on T2

dhcs_ix_scan_close,
IndexScanHandle.close on T2

dhcs_tpl_insert, TableHandle.insert
on T1

dhcs_ix_scan_open,
StorageManagerHandle.getIndexSc

anHandle
on T1

dhcs_tpl_close,
TableHandle.close on T1

dhcs_ix_close,
IndexHandle.close on T1

Only called if implementation sets
DHCS_IX_UPD_REQUIRED,

StorageCodes.IX_UPD_REQUIRED
=

Yes

No

SQL_NOT_FOUND?

dhcs_rss_init,
StorageEnvironment.createStorageEnvironment,

StorageEnvironment.createStorageManagerHandle

dhcs_ix_scan_open,
StorageManagerHandle.getIndexScanHandle

on T2

dhcs_tpl_open,
StorageManagerHandle.getTableHa

ndle on T2

dhcs_ix_scan_fetch ,
IndexScanHandle.getNextRecord on

T1

dhcs_tpl_fetch ,
TableHandle.getRecord on T1

dhcs_tpl_open,
StorageManagerHandle.getTableHa

ndle on T1

dhcs_ix_insert ,
IndexHandle.insert on T1

Dharma Systems Inc. 3-23

User Guide
passing the tuple identifier for the existing record, along with the values to be modi-
fied. There is no corresponding update routine for indexes, however. Instead, if the
implementation requires explicit index updation, the SQL engine makes two calls to
delete the old entry (dhcs_ix_delete, IndexHandle.delete) and create the new one
(dhcs_ix_insert, IndexHandle.insert).

When deleting records, the SQL engine first deletes the record from the table (
dhcs_tpl_delete, TableHandle.delete). It passes the tuple identifier for the record, and
for the C stubs, the table handle. If the implementation requires explicit index
updataion, the SQL engine then deletes the index entry (dhcs_ix_delete, IndexHan-
dle.delete).

3.3.4.2 Managing Transactions
A transaction is a group of operations whose changes can be made permanent or
undone only as a unit. Once you implement the ability to change data in the propri-
etary storage system, you may also need to implement transaction management to pro-
tect against data corruption.

Note Based on the requirements of your proprietary storage system, you may
decide you do not need to implement transaction management. If so, you
can skip this section. As supplied, the transaction storage interfaces print
a warning message and return a success status code. If you do not wish to
implement transaction support, simply remove the warning message.

The SQL engine does not manage transactions, but only calls the appropriate storage
interface when directed to do so by an client application. For instance, the SQL
engine does not guarantee that one user's changes will not conflict with another user's.
It is up to the implementation to enforce whatever concurrency control and consis-
tency level it requires, given the capabilities of the underlying proprietary storage sys-
tem.

Applications issue ODBC calls that result in the SQL engine calling one of the follow-
ing storage interfaces:

• dhcs_begin_trans/StorageEnvironment.beginTransaction signals the beginning of
a series of operations that must be managed as a single transaction

• dhcs_commit_trans/StorageEnvironment.commitTransaction ends a transaction
and specifies that results of the operations within it be made permanent

• dhcs_abort_trans/StorageEnvironment.rollbackTransaction ends a transaction
and specifies that results of the operations within it be undone

These routines do not include an identifier to distinguish between different users'
transactions. However, each connection to the database generates a new process,
which implementations can map to their mechanism for managing transactions.
3-24 Dharma Systems Inc.

Implementation Strategy
3.3.4.3 Testing Stage 4 Implementation
To test stage 4 implementation, you can use the isql utility. Issue queries such as the
following on tables in the proprietary database:

3.3.5 Stage 5: Data Definition
Stage 5 implements the ability to create new tables and indexes, and delete existing
tables and indexes in the proprietary storage system. Stage 5 implementation is
optional and requires that your proprietary storage system has a mechanism for creat-
ing new database objects.

Stage 5 involves full implementation of table creation (dhcs_add_table, StorageMan-
agerHandle.createTable) and index creation (dhcs_create_index, StorageManager-
Handle.createIndex). As implemented in stages 2 and 3, those routines return a table
or index identifier that corresponds to an existing object in the proprietary storage sys-
tem. For stage 5, implementations must extract the metadata the SQL engine passes to
the routines:

• For table creation in the C stubs (dhcs_add_table) , a pointer to the dhcs_fld_list_t
data structure, which contains details of the table column definitions

• For table creation in the Java stubs (StorageManagerHandle.createTable), a
TableFields array which contains details of the table column definitions

• For index creation in the C stubs (dhcs_create_index), a pointer to the
dhcs_keydesc_t data structure, which contains details of the index keys and the
sort order for the index

• For index creation in the Java stubs (StorageManagerHandle.createIndex), an
IndexFields array which contains details of the index keys and the sort order for
the index

3.3.5.1 Testing Stage 5 Implementation
To test stage 5 implementation, you can use the isql utility. Issue queries such as the
following on tables in the proprietary database:

INSERT INTO T1 (C1)
VALUES ('whatever');

Checks insert execution. If there is an index on c1 and
the implementation set
DHCS_IX_UPDATE_REQUIRED, also initiates an
insert operation on the index.

DELETE FROM T1
WHERE C1 = 'whatever';

Checks delete execution. If there is an index on c1 and
the implementation set
DHCS_IX_UPDATE_REQUIRED, also initiates a delete
operation on the index.

UPDATE T1
SET C1 = 'new value';

Checks update execution. If there is an index on c1 and
the implementation set
DHCS_IX_UPDATE_REQUIRED, also initiates a delete
and insert operation on the index.

CREATE TABLE NEW
(C1 INT, C2 CHAR(10));

Checks table creation.
Dharma Systems Inc. 3-25

User Guide
3.3.6 Stage 6: Storage System Scalar Functions and Procedures
Stage 6 provides support for calling scalar functions and procedures that are defined in
the storage system.

Scalar functions are a type of SQL expression that return a value based on the argu-
ment(s) supplied. SQL defines a number of standard scalar functions which the
Dharma Engine implements. Scalar functions are sometimes an integral part of the
support provided by a DBMS for query expressions. A DBMS may provide several
built-in scalar functions that transform data in different ways. Additionally, there is
sometimes a need for a custom-transformation of the data, a transformation that is not
done by any of the functions provided by the DBMS.

The stub-defined scalar functions provide a means to access DBMS defined scalar
functions, or to create new scalar functions that are processed entirely in the stub code.
Storage system defined scalar functions are an extension to the existing built-in scalar
functions defined by SQL and return a single value each time one is invoked. These
functions can be used in queries in the same way that system defined scalar functions
are used. The stub functions are written either in C for the SDK with C stubs or in Java
for the SDK with Java stubs. Stub Defined Scalar Functions can be executed using
ISQL, ODBC, JDBC and .NET Data Provider.

Stub procedures provide a very flexible and general mechanism to enforce business
rules and perform administrative tasks. Procedures can implement elaborate algo-
rithms to enforce complex business rules. Procedures differ from scalar functions in
the way they are called and in the way they return their results. While scalar functions
return a single value, procedures return their results either through output parameters
or through resultsets. While stub scalar functions can be used in any SQL query, stub
procedures are invoked using a CALL statement.

The information about the storage system Functions and Procedures along with the
details of their parameters, resultset and return type is provided by the storage system
to the Dharma Engine by means of an array of structures. This information is passed to
the Dharma Engine by the storage system in response to the stub function
dhcs_get_procinfo, StorageManagerHandle.getProcedureMetaData called by the
Engine. Implementation of stub functions and procedures is optional. If functions and
procedures are not supported by the storage system then dhcs_get_procinfo, Storage-
ManagerHandle.getProcedureMetaData should return a response that indicates this.

Storage system scalar function are invoked in exactly the same manner as built in
scalar functions. Storage system scalar functions can be used in the SELECT list or in
the WHERE clause. They can be used as parameters of other scalar functions or in any
expression. The parameter passed to a stub scalar function can be a literal, field
reference or any expression.

Examples:

SELECT str_cat(‘abcd’,’efgh’) FROM syscalctable
SELECT empfname, str_cat(empfname,emplname) FROM emp WHERE
str_cat(‘mary’,’john’) = ‘maryjohn’

CREATE INDEX NEW_IX
ON NEW (C1 ASC);

Checks index creation.
3-26 Dharma Systems Inc.

Implementation Strategy
If the arguments are not known at prepare time, parameter references could be used.
Parameter references can be used only from ODBC/JDBC applications.
Example:
SELECT str_cat(?,?) FROM emp
SELECT * FROM emp WHERE str_cat(?,?) = ‘MaryJohn’.

Procedures are invoked using the CALL statement. Procedures can be called from ISQL
and ODBC/JDBC applications.
Procedures can return results through OUT and INOUT parameters as well return a
resultset. Procedures with OUT or INOUT parameters however cannot be called from
ISQL. Stub procedures do not support return values in the ODBC escape sequence.
The syntax of calling a procedure is as follows-

CALL procedure_name [(parameter [, ...])]}

The parameter passed to a stub procedure can be a literal or any expression involving
literals or a parameter reference.

CALL print_records()
CALL str_cat(‘abcd’,’efgh’)

If the parameters are of output or input/output type, parameter markers (question marks
used as placeholders) have to be used. The following example shows a call to a stored
procedure named order_parts that passes a single input parameter using a parameter
marker.
Example: Invoking a Stored Procedure from an ODBC Application
 SQLUINTEGER Part_num;

SQLINTEGER Part_numInd = 0;
// Bind the parameter.
SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, 0, 0, &Part_num, 0, Part_numInd);
// Place the department number in Part_num.
Part_num = 318;
// Execute the statement.
SQLExecDirect(hstmt, "{call order_parts(?)}", SQL_NTS);

The JDBC call escape sequence is the same as in ODBC:
{ call proc_name [(parameter [, …])] }

Embed the escape sequence in a JDBC CallableStatement.prepareCall method
invocation.
The following example shows the JDBC code parallel to the ODBC code excerpt
shown in the previous example.
Example: Invoking a Stub Procedure from a JDBC Application
try {
CallableStatement statement;
int Part_num = 318;
Dharma Systems Inc. 3-27

User Guide
// Associate the statement with the procedure call
// (conn is a previously-instantiated connection object)
statement = conn.prepareCall("{call order_parts(?)}");
// Bind the parameter.
statement.setInt(1, Part_num);
// Execute the statement.
statement.execute();
}

The Dharma engine does not carry out any security or privilege checks during
execution of a stub function or procedure. This is left to the function implementation.
The user name is passed as an argument to the execute function of the stub function
and procedures. It is left to the function/procedure to check if the user has privilege to
execute the function/procedure and go ahead with the execution or return an error.

3.3.7 Stage 7: Long Data Type Support
Stage 7 provides access to unstructured character and binary data in columns defined
with the SQL LONG VARCHAR or LONG VARBINARY data type.

Data in such columns can be of any length and of any format. For instance, long data-
type columns can store large amounts of text, long strings of binary data (such as exe-
cutable images or input from data-collection devices), or graphics files.

Because of the arbitrary length and structure of such long data-type data (or simply
"long data"), the Dharma SDK provides storage interfaces to retrieve or store it in seg-
ments. These interfaces are modeled after the Microsoft ODBC SQLGetData and
SQLPutData functions. An ODBC application calls these ODBC functions, and the
SQL engine in turns calls dhcs_get_data or dhcs_put_data for the C stubs or Long-
DataHandle.getLongVarCharData/LongDataHandle.getLongVarBinaryData or
LongDataHAndle.putLongVarCharData/LongDataHandke.putLongVarBinaryData
for the Java stubs.

• To retrieve long data, it loops through calls to dhcs_get_data for the C stubs or
LongDataHandle.getLongVarCharData/LongDataHandle.getLongVarBinaryData
for the Java stubs. Each call to dhcs_get_data for the C stubs or LongDataHan-
dle.getLongVarCharData/LongDataHandle.getLongVarBinaryData for the Java
stubs retrieves a segment of a long field value.

• To store long data, it loops through calls to dhcs_put_data for the C stubs or
LongDataHandle.putLongVarCharData/LongDataHandle.putLongVarBinary-
Data for Java stubs. Each call to dhcs_put_data for C Stubs or LongDataHan-
dle.putLongVarCharData/LongDataHandle.putLongVarBinaryData for Java stubs
stores a segment of a long field value.

• To copy data from one long data-type column to another, it calls dhcs_put_hdl for
C stubs.

For all these interfaces, the SQL engine passes a field handle. Field handles are char-
acter strings that identify storage for data in long data-type columns. The structure
and contents of field handles are up to the implementation.

For SDK for Java, the SQL engine passes LongDataHandle object.
3-28 Dharma Systems Inc.

Implementation Strategy
Implementations create field handles when the SQL engine calls the dhcs_tpl_insert
routine for C stubs or TableHandle.insert for Java stubs. (This is in contrast to con-
ventional data-type columns, for which the SQL engine passes actual values to the
insert routine.) Similarly, for fetch routines, implementations return field handles for
C stubs or LongDataHandle object for Java stubs instead of the actual long data val-
ues. The SQL engine then passes the field handle for C stubs or LongDataHandle for
Java stubs to the appropriate long-data storage interface, looping until the fetch or
insert is complete.

The following sections describe this process in more detail.

3.3.7.1 Retrieving Long Data

3.3.7.1.1 For C stubs

To retrieve a table row that includes long data, the SQL engine calls
dhcs_tpl_scan_fetch or dhcs_ix_scan_fetch, the same as it does for conventional data-
type columns.

However, instead of returning the actual data for a long column, the implementation
returns a field handle that identifies storage for the data in the field. When the SQL
engine calls dhcs_get_data it passes this field handle. The implementation retrieves a
segment of the field value and stores it in a buffer. It also indicates the length of the
data remaining to be retrieved.

If the ODBC application calls SQLGetData multiple times, the SQL engine calls
dhcs_get_data multiple times as well. Chapter 5 describes the arguments to
dhcs_get_data and how they interact.

The following figure shows the series of calls the SQL engine makes to retrieve long
data.
Dharma Systems Inc. 3-29

User Guide
Figure 3-6: Calls to Retrieve Data in Stage 7

3.3.7.1.2 For Java Stubs

To retrieve a table row that includes long data, the SQL engine calls TableScanHan-
dle.getNextRecord or IndexScanHandle.getNextRecord, the same as it does for con-
ventional data-type columns.

However, instead of returning the actual data for a long column, the implementation
returns a LongDataHandle identifies storage for the data in the field. Then the SQL
engine calls LongDataHandle.getLongVarCharData/LongDataHandle.getLongVarBi-
naryData. The implementation retrieves a segment of the LongDataHandle and stores
it in a buffer. It also indicates the length of the data remaining to be retrieved.

If the ODBC application calls SQLGetData multiple times, the SQL engine calls
LongDataHandle.getLongVarCharData/LongDataHandle.getLongVarBinaryData
multiple times as well. Chapter 6 describes the arguments to LongDataHandle.get-
LongVarCharData/LongDataHandle.getLongVarBinaryData and how they interact.

3.3.7.2 Storing Long Data

3.3.7.2.1 For C stubs

The process for storing long data is similar to retrieving long data values:

• The SQL engine calls dhcs_tpl_insert.

• Instead of passing data values for long columns, the SQL engine expects
dhcs_tpl_insert to return a field handle identifying storage to receive the long
data. (The implementation should initialize this storage, since there is no guaran-

Yes

Yes

No

No

End of Field?

dhcs_get_data

Long Datatype?

dhcs_rss_init

dhcs_rss_cleanup

dhcs_tpl_scan_close

dhcs_tpl_scan_fetch

dhcs_tpl_scan_open

Yes
No SQL_NOT_FOUND?

SELECT LONG_COL FROM T1;
3-30 Dharma Systems Inc.

Implementation Strategy
tee that the client application will actually request the SQL engine to call
dhcs_put_data.)

• The SQL engine passes the field handle in a call to dhcs_put_data, along with a
segment of the data for the field. The implementation stores the segment.

• If the client application requests, the SQL engine calls dhcs_put_data again until
the entire field value is stored.

There is no mechanism for updating long data. The SQL engine generates an error if
it encounters an SQL UPDATE statement that specifies a LONG VARCHAR or
LONG VARBINARY column.

The SQL engine uses a different process for INSERT … SELECT statements that
copy data from one long column to another. Instead of looping through calls to
dhcs_get_data to retrieve the data, and then looping through calls to dhcs_put_data to
store it, the SQL engine uses the dhcs_put_hdl routine to simply copy the field handle
for the data. See Chapter 5 for details.

3.3.7.2.2 For Java stubs

The process for storing long data is similar to retrieving long data values:

• The SQL engine calls TableHandle.insert.

• Implementations should call the method fieldValue.isNull.

 If the isNull return true, then the SQL engine expects TableHandle.insert to create a
LongDataHandle identifying storage to receive the long data and set this object in the
FieldValue using fieldValue.setData() (The implementation should initialize this stor-
age, since there is no guarantee that the client application will actually request the
SQL engine to call LongDataHandle.putLongVarCharData/LongHandle.putLongVar-
BinaryData.)

 if isNull returns false then TableHandle.insert is initiated by a INSERT ... SELECT
statement. Implementations should copy the long data from the LongDataHandle
present in the fieldValues and store it in the proper destination.

• The SQL engine make a call to LongDataHandle.putLongVarCharData/LongDa-
taHandle.putLongVarBinaryData along with a segment of the data for the field.
The implementation stores the segment.

• If the client application requests, the SQL engine calls LongDataHandle.putLong-
VarCharData/LongDataHandle.putLongVarBinaryData again until the entire
field value is stored.

There is no mechanism for updating long data. The SQL engine generates an error if
it encounters an SQL UPDATE statement that specifies a LONG VARCHAR or
LONG VARBINARY column.

3.3.7.3Creating Indexes on Long Data-Type Columns
Indexes on long columns are a special case. The only index operator allowed on a
long column is CONTAINS. When an index is created on a long field, the SQL
engine checks that CONTAINS is the only operator supported by that index type, and
Dharma Systems Inc. 3-31

User Guide
generates an error if that is not the case. See the CONTAINS notes on page 5-1 for
more detail.

3.3.7.4 Testing Stage 7 Implementation
To test stage 7 implementation, you need an ODBC application that supports long data
types. (Specifically, you need to use an ODBC tool that issues SQLGetData and
SQLPutData calls.) The ODBC Test application supplied as part of Microsoft's
ODBC SDK is one way to issue SQLGetData and SQLPutData calls. The following
figure shows the dialog box from the ODBC Test application for issuing the SQLGet-
Data call.

Figure 3-7: Testing Long Data Type Support

3.3.8 Stage 8: Dynamic Metadata Support
Stage 8 allows implementations to dynamically provide details about tables and
indexes that reside in the proprietary storage system. Stage 8 implementation is
optional.

By default, implementations use SQL scripts and the isql utility to load definitions of
metadata into the Dharma SDK data dictionary. The Dharma SDK then maintains the
metadata internally, separate from the proprietary storage system. This default is
appropriate for environments where details about application tables are known ahead
of time.

However, in some environments, applications frequently add or change tables and
indexes by means other than SQL and the Dharma SDK. In such an environment, the
default approach of loading metadata through a static SQL script makes it difficult to
keep the Dharma SDK metadata synchronized with the dynamically-created tables.

To accommodate these dynamic environments, the Dharma SDK includes routines for
implementations to provide detail on user tables and indexes that reside in the propri-
etary storage system. If an implementation indicates support for dynamic metadata,
the SQL engine calls the routines each time a user connects to the storage system. The
implementation responds to the calls by returning metadata for tables that the user is
allowed to access.

Note A consequence of supporting dynamic metadata is that implementations
should ignore calls to data definition routines-dhcs_add_table,
dhcs_create_index, dhcs_drop_table, and dhcs_drop_index-that set the
meta_data_only argument to TRUE.
3-32 Dharma Systems Inc.

Implementation Strategy
The SQL engine stores the detail provided through these routines in memory-resident
versions of the systables, sysindexes, syscolumns, and systabauth data dictionary
tables. Once the memory-resident tables contain the necessary metadata information,
the SQL engine processes queries as usual.

For instance, if a user creates a table, the SQL engine still calls the dhcs_add_table
routine and updates the memory-resident metadata information to reflect the new table
or index. When the connection is closed, however, the data is gone and subsequent
connections will show the new table only if the information about it is returned by the
dynamic metadata routines called at connection time.

3.3.8.1 Indicating Support for Dynamic Metadata
Storage managers indicate support for dynamic metadata through the
DH_DYNAMIC_METADATA variable. If this runtime variable is set to Y, the SQL
engine relies on the storage manager to provide details on user tables and indexes.

To set DH_DYNAMIC_METADATA:

• On Windows XP and Windows 2000, change the %windir%/dh*odbc.ini initial-
ization file and add the variable.

• On UNIX, set the environment variable for the user dharma.

In client/server configurations, set the DH_DYNAMIC_METADATA environment
variable on the server system before starting the server process.

3.3.8.2 Providing Detail on User Tables and Indexes
To support dynamic metadata, storage managers implement routines that the SQL
engine calls to obtain details of user tables and indexes in the storage system.

When a user first connects to the storage system, before the first transaction begins,
the SQL engine calls routines to get information about tables that the user can access:

• dhcs_get_metainfo returns the number of tables that the user can access, and
whether subsequent calls to dhcs_get_tblinfo will return detail on those tables
sorted by table name. The SQL engine calls dhcs_get_metainfo once for each
user connection. Implementation of dhcs_get_metainfo is optional. See Chapter
5 for details.

• dhcs_get_tblinfo returns detail on a single table. This routine passes the structure
dhcs_tblinfo_t, which the implementation fills in with the name, owner, and iden-
tifier for the table. The SQL engine calls dhcs_get_tblinfo repeatedly until the
implementation returns SQL_NOT_FOUND to indicate there are no more tables
accessible by the user. The SQL engine uses the information supplied through
calls to dhcs_get_tblinfo to load a memory-resident version of the systables sys-
tem catalog table. See Chapter 5 for details.

Note that it is the responsibility of the implementation to determine which tables are
accessible by the user connected to the storage system, and to return metadata for
those tables only.

To improve performance, the SQL engine limits the information it retrieves when a
user first connects to the storage system. It postpones retrieving detail about the col-
Dharma Systems Inc. 3-33

User Guide
umns in a table and any indexes associated with the table until an SQL statement first
refers to that table. At that point, the SQL engine calls the following routines to get
full detail about the columns and indexes:

• dhcs_get_colinfo returns detail on all the columns in the table. The routine passes
arguments that identify the table of interest, and an array of structures which the
implementation fills in with details of the table's columns. The SQL engine loads
the column information into a memory-resident version of the syscolumns system
catalog table.

• dhcs_get_idxinfo returns detail on a single index. The routine passes arguments
that identify the table of interest, and the structure dhcs_idxinfo_t, which the
implementation fills in with details on a single index. The SQL engine calls
dhcs_get_idxinfo repeatedly until the implementation returns
SQL_NOT_FOUND to indicate there are no more indexes for the table. The SQL
engine loads the index information into a memory-resident version of the sysin-
dexes system catalog table.

The dynamic metadata routines only support metadata for tables, columns, and
indexes. It is not possible for implementations to provide metadata about other
objects, such as constraints on user tables.

3.3.8.3 Testing Stage 8 Implementation
To test stage 8 implementation, you can use the isql utility. Issue queries on system
catalog tables to confirm that the metadata was correctly returned by the dynamic
metadata routines:

3.4 BUILDING AND CONFIGURING THE DHARMA SDK SERVER
As you progress in your implementation, you will routinely want to build the Dharma
SDK Server executable that uses your proprietary storage system.

The steps to do this parallel those described in Chapter 2 for building the Dharma
SDK Server for the sample implementation. The steps are different for the Dharma
SDK Desktop and Dharma SDK Client/Server configurations.

This section describes building the Dharma SDK Server for the Desktop and Client/
Server configurations of the Dharma SDK.

SELECT TBL FROM SYSTABLES
 WHERE TBLTYPE='T';

Checks that the dhcs_get_tblinfo rou-
tine supplied metadata for all user
tables.

SELECT DISTINCT IDXNAME
 FROM SYSINDEXES I, SYSTABLES T
 WHERE I.TBL = T.TBL AND T.TBLTYPE='T';

Checks that the dhcs_get_idxinfo rou-
tine supplied metadata for all user
indexes.

SELECT SC.TBL, SC.COL,
 FROM SYSCOLUMNS SC, SYSTABLES ST
 WHERE SC.TBL = ST.TBL AND ST.TBLTYPE='T';

Checks that the dhcs_get_colinfo rou-
tine supplied metadata for all the col-
umns in user tables.
3-34 Dharma Systems Inc.

Implementation Strategy
3.4.1 Desktop
Before you build the Dharma SDK Server, first install the development components as
described in Chapter 2.

Once you do that, complete the following steps:

• Build the Desktop Dharma SDK DLL.

• Create and load the data dictionary (only required once).

3.4.1.1 Building the Desktop Dharma SDK DLL
C Stubs

Build the Dharma SDK DLL by executing the dhdaemon.mak makefile in %TPE-
ROOT%\odbcsdk\src. You may need to modify the makefile to link with additional
libraries and object modules specific to your implementation. As provided, the
dhdaemon.mak file in %TPEROOT%\odbcsdk\src generates an executable named
dhstodbc.dll in the %TPEROOT%\bin directory.

Open and build the dhdaemon.mak file in Microsoft Visual C++ to create the Desktop
Dharma SDK DLL.

Java Stubs

Build the class files for the Java stubs by executing the build.bat batch file in %TPE-
ROOT%\sdk4java\src. You may need to modify the batch file to use classes specific
to your implementation. The build.bat file in %TPEROOT%\sdk4java\src generates
the classes for the Java storage stubs and places in %TPEROOT%\classes\jrss\stubs
directory.

3.4.1.2 Creating and Loading the Data Dictionary
The executable %TPEROOT%\bin\mdcreate is a utility to create a data dictionary that
accepts metadata. Invoke the mdcreate utility and supply a name that will be used for
the data dictionary and for access to the sample implementation. For example:

%TPEROOT%\bin\mdcreate proprietary_db

The mdcreate utility creates a subdirectory called <dbname>.dbs under the %TPE-
ROOT% directory and populates the directory with the necessary files. For instance,
the preceding example creates the directory

 %TPEROOT%\proprietary_db.dbs.

The executable %TPEROOT%\bin\isql is a tool for loading metadata and for interac-
tive SQL queries. It accepts a script with special SQL CREATE TABLE and CRE-
ATE INDEX statements that insert metadata for existing tables.

Note If your implementation supports dynamic metadata, you do not need to
load metadata using isql. Instead, the SQL engine loads metadata auto-
matically each time an application connects to the database. See section
3.3.8 for details on dynamic metadata support.

You can create a SQL script file with CREATE TABLE and INDEX statements spe-
cific to your database. To load the metadata for your proprietary storage system,
Dharma Systems Inc. 3-35

User Guide
invoke isql to execute the script file. The following example shows invoking the SQL
commands in a file called md_script to create metadata for a database called
proprietary_db.

isql -s %TPEROOT%\odbcsdk\md_script proprietary_db

 Dharma/isql Version 09.01.0000

 Dharma Systems Inc (C) 1988-2005.

 Dharma Systems Pvt Ltd (C) 1988-2005.

Password for dharma to access proprietary_db:

The isql command has other options for additional flexibility. See the isql reference
section in Appendix A for a more detailed description of the isql command.

3.4.2 Client/Server
Before you build the Dharma SDK Server, first install the development components
and the Dharma SDK ODBC Driver as described in Chapter 2.

Once you do that, complete the following steps:

• Stop the dhdaemon Dharma SDK Server process if it is running.

• Build a new version of the dhdaemon Dharma SDK Server executable.

• Restart the dhdaemon server to use the new executable.

• Create and load the data dictionary (only required once).

The following sections describe these steps in more detail.

3.4.2.1 Stopping the dhdaemon Process
On UNIX, use the dhdaemon stop command, as shown in the following example, to
stop the server.

Example 3-8: Stopping the dhdaemon Dharma SDK Server Process

$ dhdaemon stop

 Dharma/dhdaemon Version 09.01.0000

 Dharma Systems Inc (C) 1988-2005.

 Dharma Systems Pvt Ltd (C) 1988-2005.

Daemon version: Feb 10 2005 17:02:43

 Running since: 02/11/2005 17:43:25 on bhima

Working directory: /vol6/sdkdir

SQL-Server version: /vol6/sdkdir/bin/dhdaemon

Nr of servers started: 0

 running: 0
3-36 Dharma Systems Inc.

Implementation Strategy
 crashed: 0

dhdaemon stopped: PID 11292

If the Dharma SDK Server is already stopped, the dhdaemon stop command generates
a Connection refused message:

$ dhdaemon -s sqlnw_ks stop

 Dharma/dhdaemon Version 09.01.0000

 Dharma Systems Inc (C) 1988-2005.

 Dharma Systems Pvt Ltd (C) 1988-2005.

Daemon:connect failed: Connection refused

Daemon:connect failed: Connection refused

On Windows, stop the dhdaemon service through the Windows Control Panel:

• Invoke the Windows Control Panel and select Services. In the list of services that
appears, locate the entry for the Dhdaemon service.

• If the entry for Dhdaemon indicates the service is running, select it and click the
Stop button.

3.4.2.2 Building the Client/Server Dharma SDK Server Executable
C Stubs

On UNIX, build the Dharma SDK Server by executing the makefile $TPEROOT/
odbcsdk/src/makefile. You may need to modify the makefile to link with additional
libraries and object modules specific to your implementation. The makefile in $TPE-
ROOT/odbcsdk/src generates the dhdaemon Dharma SDK Server in the $TPEROOT/
bin directory.

Log in as dharma before building the Dharma SDK Server. The following example
shows building the dhdaemon executable from completed routine templates.

Example 3-9: Building the dhdaemon Dharma SDK Server for a Proprietary Storage Sys-
tem

$ cd $TPEROOT/odbcsdk/src

$ make

Java Stubs

On UNIX, build the Dharma SDK Server by executing the script $TPEROOT/
sdk4java/src/build.sh. You may need to modify the script to link with additional
libraries and object modules specific to your implementation. The script in $TPE-
ROOT/odbcsdk/src generates the dhdaemon Dharma SDK Server in the $TPEROOT/
bin directory.
Dharma Systems Inc. 3-37

User Guide
Log in as dharma before building the Dharma SDK Server. The following example
shows building the dhdaemon executable from completed routine templates.

Example 3-10: Building the dhdaemon Dharma SDK Server for a Proprietary Storage
System

$ cd $TPEROOT/sdk4java/src

$ sh build.sh

C Stubs

On Windows, build the Dharma SDK Server by executing the dhdaemon.mak make-
file in %TPEROOT%\odbcsdk\src. You may need to modify the makefile to link with
additional libraries and object modules specific to your implementation. The dhdae-
mon.mak file in %TPEROOT%\odbcsdk\src generates the dhdaemon Dharma SDK
Server in the %TPEROOT%\bin directory.

Open and build the dhdaemon.mak file in Microsoft Visual C++ to create the dhdae-
mon Dharma SDK Server.

Java Stubs

On Windows, build the Dharma SDK Server by executing the build.bat batch file in
%TPEROOT%\sdk4java\src. You may need to modify the batch file to link with addi-
tional libraries and object modules specific to your implementation. The build.bat file
in %TPEROOT%\sdk4java\src generates the dhdaemon Dharma SDK Server in the
%TPEROOT%\bin directory.

3.4.2.3 Restarting the dhdaemon Service
On UNIX, use the dhdaemon start command, as shown in the following example, to
start the server.

Example 3-11: Restarting the dhdaemon Process for the Proprietary Storage System

$ dhdaemon start

 Dharma/dhdaemon Version 09.01.0000

 Dharma Systems Inc (C) 1988-2005.

 Dharma Systems Pvt Ltd (C) 1988-2005.

Daemon started: PID 2669

On Windows:

• Invoke the Windows Control Panel and select Services. In the list that appears,
select the entry for the Dhdaemon service.

• Click the Start button.

3.4.2.4 Creating the Data Dictionary
The executable $TPEROOT/bin/mdcreate is a utility to create a data dictionary that
accepts metadata.

Log in as dharma before creating the data dictionary. Invoke the mdcreate utility and
supply a name that will be used for the data dictionary and for access to the propri-
etary storage system.
3-38 Dharma Systems Inc.

Implementation Strategy
The mdcreate utility creates a subdirectory called <dbname>.dbs under the $TPE-
ROOT directory and populates the directory with the necessary files. The following
example shows invoking mdcreate to create a database called proprietary_db, result-
ing in the directory $TPEROOT/proprietary_db.dbs.

Example 3-12: Using mdcreate to Create a Database

$ dharma/bin/mdcreate proprietary_db

 Dharma/mdcreate Version 09.01.0000

 Dharma Systems Inc (C) 1988-2005.

 Dharma Systems Pvt Ltd (C) 1988-2005.

$

3.4.2.5 Loading Metadata for the Proprietary Storage System
The executable $TPEROOT/bin/isql is a tool for loading metadata as well as execut-
ing interactive SQL queries. It accepts a script with special SQL CREATE TABLE
and CREATE INDEX statements that insert metadata for existing tables.

Note If your implementation supports dynamic metadata, you do not need to
load metadata using isql. Instead, the SQL engine loads metadata auto-
matically each time an application connects to the database. See section
3.3.8 0 for details on dynamic metadata support.

You invoke isql on the server after the dhdaemon service is started. Log in as dharma
before invoking isql.

You can create a SQL script file with CREATE TABLE and INDEX statements spe-
cific to your database. To load the metadata for your proprietary storage system,
invoke isql to execute the script file. The following example shows invoking the SQL
commands in a file called md_script to create metadata for a database called
proprietary_db.

Example 3-13: Using isql to Load Metadata

$ isql -s $TPEROOT/md_script proprietary_db

 Dharma/isql Version 09.01.0000

 Dharma Systems Inc (C) 1988-2005.

 Dharma Systems Pvt Ltd (C) 1988-2005.

/vol6/sdkdir/bin/dhdaemon.exe <SQL SERVER 26517> -d
proprietary_db -h 415136 sqlnw

> > > Server 26517 done: Thu Nov 19 14:55:34 1998

The isql command has other options for additional flexibility. See the isql reference
section in Appendix A for a more detailed description of the isql command.
Dharma Systems Inc. 3-39

User Guide
3.5 SETTING DHARMA SDK RUNTIME VARIABLES
This section describes runtime variables that specify various characteristics of
Dharma SDK behavior.

On Windows, initialization files set the variables. Edit one of the following files to
change the default settings:

• Desktop: %windir%/dhstodbc.ini

• Client/server: %windir%/dhsodbc.ini

Add a line to the initialization file to set the desired environment variable. For
instance:

TPE_DATADIR=E:\data\

On UNIX, set an environment variable for the user dharma at the command line or
embed it in a script. For instance:

$ setenv TPE_DATADIR /usr/data/

3.5.1 Specifying the Main Dharma SDK Directory with TPEROOT
The TPEROOT variable specifies the main directory for the Dharma SDK installation.

TPEROOT must be set to build or run the Dharma SDK Server. There is no default
for TPEROOT. When you install the Dharma SDK development components on Win-
dows, the installation creates the appropriate initialization file for your configuration
and sets TPEROOT to the directory you specified during the installation. On UNIX,
you must set TPEROOT interactively or in a script.

Similarly, when you create a release kit to install your implementation of the Dharma
SDK Server executable, the installation should make sure TPEROOT specifies the
main directory for the installation.

TPEROOT does not have to be set on client systems.

The TPEROOT variable can hold the path in UNC notation. The UNC path notation
will be in the following form:

- \\<machine-name\<share-point>\<path>

- TPEROOT=\\SmartStation\SmartC-Share\dharma

3.5.2 Specifying Location of the Data Dictionary with TPE_DATADIR
The TPE_DATADIR variable specifies the location for the data dictionary:

• The mdcreate utility creates a subdirectory to contain data dictionary files in the
directory path specified by TPE_DATADIR.

• The Dharma SDK executable uses the path specified by TPE_DATADIR to access
the data dictionary.
3-40 Dharma Systems Inc.

Implementation Strategy
In the Desktop configuration, the -d argument to the mdcreate and isql commands
overrides the value of TPE_DATADIR. If TPE_DATADIR is not set and mdcreate
does not specify -d, the default is the path specified by TPEROOT.

3.5.3 Indicating Support for Dynamic Metadata with DH_DYNAMIC_METADATA
Storage managers indicate support for dynamic metadata through the
DH_DYNAMIC_METADATA variable. If this environment variable is set to Y, the
SQL engine relies on the storage manager to provide details on user tables and
indexes.

3.5.4 Thread Safety of Dharma SDK ODBC Driver
By default, the Dharma SDK ODBC Driver is THREAD SAFE. However, this may
not always be desired as it involves overhead on the performance of the system. Sin-
gle-threaded ODBC applications do not require Thread Safety as only one thread is
involved.

To disable the Thread Safety feature, the following runtime flag is used:

DH_DISABLE_ODBC_THREAD_SAFETY

This flag must be set in dhs*odbc.ini on Windows. In UNIX, it should set in environ-
ment for user dharma.

The default is Thread Safety enabled. To disable the Thread Safety feature, set this
variable to the following:

DH_DISABLE_ODBC_THREAD_SAFETY = Y

3.5.5 Controlling Log File Output with TPESQLDBG
The Dharma SDK Server creates a log file called sql_server.log in the directory that
contains the data dictionary (the directory is the dbname.dbs directory under the
$TPEROOT directory).

The TPESQLDBG variable controls what logging information the SQL engine writes
to sql_server.log. It has the format:

TPESQLDBG=xxxxxxxxxx

Specify Y or N for each occurrence of x to enable (Y) or disable (N) each of several
categories of logging. For example, TPESQLDBG=YNNYNNNNNN enables the
first and fourth categories of logging. The following table shows the logging category
that each position in the TPESQLDBG variable enables:
Dharma Systems Inc. 3-41

User Guide
Table 3-3: TPESQLDBG Logging Values

Generally, the only categories you ever need to enable are 1 and 4. TPESQLDBG
provides useful information for debugging problems. For best performance, however,
and to limit the size of the log file, do not set TPESQLDBG, or disable all
TPESQLDBG logging categories:

TPESQLDBG=NNNNNNNNNN

3.5.6 Setting Default Date Format With TPE_DFLT_DATE
The TPE_DFLT_DATE variable allows users to change the default date format used
by SQL. Changing the default date format affects:

• The default output format of date values.

• How SQL interprets date literals in queries and INSERT statements.

Set the TPE_DFLT_DATE variable to one of the following values to change the
default date format:

• US_DFLT_DATE

• UK_DFLT_DATE

Position Logging Category and Recommended Value

1 SQL: set to Y to log details of how the SQL engine processes SQL statements
passed to it by applications. Details include:

- Original SQL statement passed by the application
- Decomposition of the statement by the engine parser
- Optimization strategy chosen by the engine optimizer

2 Cache: logs the size of the binary trees created during processing. Generally,
leave set to N (disabled).

3 Data dictionary manager: logs internal details of the internal logic used during
processing. Generally, leave set to N (disabled).

4 Execution manager: set to Y to log details of runtime operations performed by
the SQL engine execution manager.

5 Optimizer: set to Y to log details of runtime operations performed by the SQL
engine optimizer.

6 Remote operations: set to Y to log details of remote operations.

7 Display cost: set to Y to log cost assessments calculated for each node in the
SQL tree.

8 Heap manager handles: Set to Y to log summary information about the heap
and parameter handles maintained by the heap manager.

9 Heap manager items: set to Y to log details of parameter and heap handle
items.

10 Primitive heap manager: set to Y to log debug information about the primitive
heap manager.
3-42 Dharma Systems Inc.

Implementation Strategy
• ISO_DFLT_DATE

Changing the value of TPE_DFLT_DATE changes how SQL interprets character
strings inserted as DATE values or compared to DATE columns. For example, setting
TPE_DFLT_DATE to UK_DFLT_DATE allows users to supply date literals in British
format (dd/mm/yyyy). The value of TPE_DFLT_DATE also determines the default
output format of date data.

The following table details the different formats each value of TPE_DFLT_DATE
supports. The boldface entries indicate the default output format for each setting.

Note You must change the value of the TPE_DFLT_DATE variable before
starting the dhdaemon process. Once dhdaemon starts, changing
TPE_DFLT_DATE will not affect the default date format.

The following example shows an interactive session on UNIX that uses the default
input format through isql, changes the format to UK, then uses that input format.

Example 3-14: Using Different Date Input Formats

$ printenv TPE_DFLT_DATE

$ dhdaemon start -q

dhdaemon started: PID 17294

$ isql newff

> -- Insert with default input format:

> insert into dtest values ('5/7/1956');

Table 3-4: Date Formats Supported for Different Values of TPE_DFLT_DATE

US_DFLT_DATE UK_DFLT_DATE ISO_DFLT_DATE

dd-mm-yyyy

dd/mm/yyyy

dd-mm-yy

dd/mm/yy

mm-dd-yyyy mm-dd-yyyy

mm/dd/yyyy mm/dd/yyyy

mm-dd-yy

mm/dd/yy

yyyy-mm-dd yyyy-mm-dd yyyy-mm-dd

yyyy/mm/dd yyyy/mm/dd yyyy/mm/dd

dd-mon-yyyy dd-mon-yyyy dd-mon-yyyy

dd/mon/yyyy dd/mon/yyyy dd/mon/yyyy

dd-mon-yy dd-mon-yy

dd/mon/yy dd/mon/yy
Dharma Systems Inc. 3-43

User Guide
1 record inserted.

> select to_char(c1, 'Month ddth') from dtest;

TO_CHAR(C1,MONTH DDTH)

May 7th

1 record selected

> quit

$ dhdaemon stop

dhdaemon stopped: PID 17294

$ setenv TPE_DFLT_DATE uk_dflt_date

$ printenv TPE_DFLT_DATE

uk_dflt_date

$ dhdaemon start -q

dhdaemon started: PID 17305

$ isql newff

> -- Insert using UK-style date format:

> insert into dtest values ('5/7/1956');

1 record inserted.

> select to_char(c1, 'Month, ddth') from dtest;

TO_CHAR(C1,MONTH, DDTH)

May , 7th

July , 5th

2 records selected

>

3.5.7 Controlling Interpretation of Years in Date Literals With DH_Y2K_CUTOFF
By default, SQL generates an invalid date string error if the year component of date
literals is specified as anything but 4 digits. The DH_Y2K_CUTOFF runtime variable
changes this default behavior to allow 1- and 2-digit year specifications and control
how SQL interprets them. (3-digit year specifications always generate an error.)

The following table lists the different values for DH_Y2K_CUTOFF and how SQL
interprets them.

Table 3-5: Values of DH_Y2K_CUTOFF Runtime Variable

Value Interpretation of 1- or 2-Digit Year in Date Literals

Not set

Set to no value

Less than zero Greater than 100 1- or 2-digit years not allowed
3-44 Dharma Systems Inc.

Implementation Strategy
Note Third-party tools have varying behavior regarding years represented as
less than 4 digits. You may want to consider that behavior in choosing
whether and how to use DH_Y2K_CUTOFF. For instance, current
Microsoft Access behavior is equivalent to setting DH_Y2K_CUTOFF to
30. Microsoft Query behavior is similar to setting DH_Y2K_CUTOFF to
0.

The following example shows excerpts of interactive SQL sessions on UNIX that
illustrate how changing the value of DH_Y2K_CUTOFF affects SQL's interpretation
of the same 2-digit year in a date literal.

Note You must change the value of the DH_Y2K_CUTOFF variable before
starting the dhdaemon process. Once dhdaemon starts, changing
DH_Y2K_CUTOFF will not affect the previously-set behavior.

Example 3-15: Interpretation of 1- or 2-Digit Year in Date Literals
> -- DH_Y2K_CUTOFF not set:

> insert into dtest values('5/7/56');

error(-20230): Invalid date string

... Exit, set DH_Y2K_CUTOFF, stop and restart dhdaemon, re-invoke isql

...

> ! printenv DH_Y2K_CUTOFF

0

> insert into dtest values('5/7/56');

1 record inserted.

> select * from dtest;

C1

--

05/07/1956

1 record selected

... Exit, set DH_Y2K_CUTOFF, stop and restart dhdaemon, re-invoke isql

...

> ! printenv DH_Y2K_CUTOFF

100

> insert into dtest values('5/7/56');

1 record inserted.

0 20th century: Adds 1900 to value (for instance, 99
denotes 1999).

100 21st century: Adds 2000 to value (for instance, 99
denotes 2099).

Greater that zero and less than
100

Depends on value of literal:

· If value is less than DH_Y2K_CUTOFF, 21st century

· If value is greater than or equal to DH_Y2K_CUTOFF,
20th century

Table 3-5: Values of DH_Y2K_CUTOFF Runtime Variable

Value Interpretation of 1- or 2-Digit Year in Date Literals
Dharma Systems Inc. 3-45

User Guide
> select * from dtest;

C1

--

05/07/2056

1 record selected

... Exit, set DH_Y2K_CUTOFF, stop and restart dhdaemon, re-invoke isql

> ! printenv DH_Y2K_CUTOFF

50

> insert into dtest values('5/7/56');

1 record inserted.

> select * from dtest;

C1

--

05/07/1956

1 record selected

... Exit, set DH_Y2K_CUTOFF, stop and restart dhdaemon, re-invoke isql

> ! printenv DH_Y2K_CUTOFF

60

> insert into dtest values('5/7/56');

1 record inserted.

> select * from dtest;

C1

--

05/07/2056

1 record selected
3-46 Dharma Systems Inc.

Chapter 4

Creating a Release Kit for Distributing the
Dharma SDK Server

4.1 INTRODUCTION
Once you complete your implementation, you need to create a release kit to install the
Dharma SDK on systems proprietary storage system. This chapter lists the files you
need to include in the release kit.

4.2 DESKTOP
The release kit must include the files listed in the following table:

Table 4-1: Files Required for Dharma SDK Server Desktop Release Kit

File Description

bin\dhstodbc.dll Dharma SDK ODBC Driver DLL (built from imple-
mented storage interfaces).

bin\dhstsetp.dll Setup DLL for configuring ODBC data sources.

bin\mdcreate.exe Utility to create a data dictionary.

bin\isql.exe Utility for loading metadata and executing simple SQL
queries.

lib\dherrors Dharma error mapping file. The release kit must copy
this file to the %TPEROOT%\lib\ directory.

lib\sql_conf Configuration file used by isql tool

md_script Completed SQL script to load metadata correspond-
ing to data in the proprietary storage system.

*classes This directory contains class files for the java storage
system
Dharma Systems Inc 4-1

User Guide
*This is applicable only for SDK for Java.

4.3 CLIENT/SERVER
The release kit must include the files listed in the following table:

*This is applicable only for SDK for Java.

%windir%\system32\msvcrt.dll
%windir%\system32\mtxdm.dll
%windir%\system32\odbc16gt.dll
%windir%\system32\odbc32.dll
%windir%\system32\odbc32gt.dll
%windir%\system32\odbccad32.exe
%windir%\system32\odbccp32.cpl
%windir%\system32\odbccp32.dll
%windir%\system32\odbccr32.dll
%windir%\system32\odbccu32.dll
%windir%\system32\odbcinst.cnt
%windir%\system32\odbcinst.hlp
%windir%\system32\odbcinst.dll
%windir%\system32\odbctrac.dll

Files required to run ODBC. The installation of the
Desktop development components creates these files
if they do not already exist.

%windir%\dhstodbc.ini Initialization file containing environment variables.
This file must at least set the TPEROOT environment
variable.

Table 4-2: Files Required for Dharma SDK Server Client/Server Release Kit

File Description

bin/dhdaemon Executable for Dharma SDK Server.

bin/mdcreate Utility to create a data dictionary.

bin/isql Utility for loading metadata.

bin/pcntreg.exe Utility to add and delete entries for the Dharma SDK in
the Windows registry

lib/dherrors Dharma error mapping file. The release kit must copy
this file to the lib subdirectory under the directory
pointed to by the TPEROOT environment variable..

lib/sql_conf Configuration file used by isql tool

md_script Completed SQL script to load metadata corresponding
to data in the proprietary storage system.

*classes This directory contains class files for the java storage
system

%windir%\dhsodbc.ini Windows only: Initialization file containing environment
variables. This file must at least set the TPEROOT
environment variable.

Table 4-1: Files Required for Dharma SDK Server Desktop Release Kit

File Description
4-2 Dharma Systems Inc

Creating a Release Kit for Distributing the Dharma SDK Server
The method for building the files into a kit varies between UNIX and Windows.

On UNIX, create a tar file.

On Windows, create a setup.exe as a self-extracting executable.

4.4 PROVIDING JAR FILE FOR SDK FOR JAVA
In case you wish to provide a jar file instead of class files for SDK for Java, follow the
instructions given below.

1. Create a jar file from the classes directory under the installation directory

E.g: jar -cvf StorageStubs.jar dharma

2.Supply this jar file in the install kit. The name of the jar file should be set in the
CLASSPATH
Dharma Systems Inc 4-3

User Guide
4-4 Dharma Systems Inc

Chapter 5

‘C’ Stubs Storage Interface Reference

5.1 COMMON DATA STRUCTURES
The file $TPEROOT/odbcsdk/src/dhcs.h defines a number of data structures that are
used as common arguments across several different storage interfaces. Table 5–1 lists
the major common data structures, and the following sections describe them in more
detail.

See the dhcs.h header file for definitions of other structures and types referred to in
these structures.

5.1.1 Table Field Lists: dhcs_fld_list_t and dhcs_fld_desc_t
The following figure shows the structures that make up a table field list.

Table 5-1: Major Common Data Structures Defined in dhcs.h

Structure Purpose

dhcs_fld_list_t Contains a list of table fields passed to dhcs_add_table.

dhcs_fld_desc_t Pointed to by dhcs_fld_list_t. Also passed directly to
dhcs_get_colinfo. Contains the table field id and other details
describing individual fields.

dhcs_keydesc_t Contains a list of index keys, passed to dhcs_create_index.

dhcs_kfld_desc_t Pointed to by dhcs_keydesc_t. Contains the index key id, its corre-
sponding table field id, and other details about the key.

dhcs_fldl_val_t Contains a list of field values, passed to the following routines:

dhcs_tpl_insert dhcs_tpl_update dhcs_tpl_fetch
dhcs_tpl_scan_fetch dhcs_ix_insert dhcs_ix_delete
dhcs_ix_scan_open dhcs_ix_scan_fetch

dhcs_fv_item_t Pointed to by dhcs_fldl_val_t. Contains the table field id (for dhcs_tpl
routines) or index key id (for dhcs_ix routines) and a pointer to the
value of the table field or index key.

dhcs_data_t Pointed to by dhcs_fv_item_t. Contains field values (or, for long data
types, field handles) and data type information.
Dharma Systems Inc 5-1

User Guide
Figure 5-1: Table Field Lists: dhcs_fld_list_t and dhcs_fld_desc_t

5.1.1.1 dhcs_fld_list_t
The dhcs_fld_list_t structure contains a list of fields that describe the columns in an
SQL table that an ODBC application is creating. The SQL engine passes a structure
of type dhcs_fld_list_t when it calls the dhcs_add_table routine.

Definition
typedef struct {

 short fld_nitems ;

 dhcs_fld_desc_t *fld_desc ;

} dhcs_fld_list_t ;

Field Descriptions

5.1.1.2 dhcs_desc_t
The dhcs_desc_t structure contains detail on a single column in an SQL table. Storage
managers must process the dhcs_desc_t structure in the following cases:

• When the SQL engine calls dhcs_add_table routine, the dhcs_fld_list_t structure
includes a pointer to an array of dhcs_desc_t structures. In this case, the
dhcs_desc_t structure is filled in with values, and the storage manager creates a
column according to the detail in the dhcs_desc_t structure.

• When the SQL engine calls the dhcs_get_colinfo routine, an element in the info
argument is a structure of type dhcs_desc_t. In this case, the dhcs_desc_t struc-
ture is empty, and the implementation fills it in with the appropriate values.

fld_nitems An integer that specifies the number of fields in the list (in other
words, the number of columns in the table being created).

fld_desc An array of structures of type dhcs_fld_desc_t. Each element of
the array contains detail on a table column.

fld_nitems itemsdhcs_fld_list_t
fld_nitems
fld_desc dhcs_fld_desc_t

fd_fldid
fd_maxlen

fd_fldname
fd_scale
fd_prec

fd_nonull
fd_typeid

. . .dhcs_fld_desc_t
fd_fldid

fd_maxlen

fd_fldname
fd_scale
fd_prec

fd_nonull
fd_typeid

dhcs_fld_desc_t
fd_fldid

fd_maxlen

fd_fldname
fd_scale
fd_prec

fd_nonull
fd_typeid
5-2 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
Definition
typedef struct {

 dhcs_field_t fd_fldid ;

 unsigned short fd_maxlen;

 dhcs_typeid_t fd_typeid;

 dh_boolean fd_nonull;

 short fd_prec;

 short fd_scale;

 char *fd_fldname;

} dhcs_fld_desc_t ;

Field Descriptions

5.1.2 Index Key Lists: dhcs_keydesc_t and dhcs_kfld_desc_t
The following figure shows the fields in the structures that make up an index key list.

fd_fldid A short integer that identifies the column. The value in fd_fldid can be any
value that is appropriate for the storage system (column sequence or byte
offset, for example).

The value for fd_fldid must uniquely identify the column within the table.
Implementations must keep track of column identifiers and their corre-
sponding names. The SQL engine passes only the identifier, not the
name, in subsequent calls. It is the implementation's responsibility to
associate the identifier with the correct column.

fd_maxlen A short integer that specifies:·

- For fixed-length data types, the fixed length
- For variable-length data types, the maximum length

fd_typeid A short integer that specifies the SQL data type.

fd_nonull A Boolean value that specifies whether the column allows null values. A
value of TRUE indicates that the column does not allow null values.

fd_prec A short integer that specifies the maximum number of digits for numeric
types.

fd_scale A short integer that specifies the number of digits to the right of the deci-
mal point for numeric types.

fd_fldname A null terminated character string that contains the column name.
Dharma Systems Inc 5-3

User Guide
Figure 5-2: Index Key Lists: dhcs_keydesc_t and dhcs_kfld_desc_t

5.1.2.1 dhcs_keydesc_t
The dhcs_keydesc_t structure contains a list of fields that describe the keys in an SQL
index that an ODBC application is creating. The SQL engine passes a structure of
type dhcs_keydesc_t when it calls the dhcs_create_index routine.

Definition
typedef struct {

 short kfld_nitems ;

 dhcs_kfld_desc_t *kfld_desc ;

} dhcs_keydesc_t ;

Field Descriptions

5.1.2.2 dhcs_kfld_desc_t
The dhcs_kfld_desc_t structure contains detail on an index key column.

Definition
typedef struct {

 dhcs_field_t kfd_field;

 unsigned char kfd_sort_order;

 unsigned short kfd_maxlen;

 dhcs_field_t kfd_tfield;

 dhcs_typeid_t kfd_typeid;

 char col_name[DHCS_MAX_FLDLEN_P1];

} dhcs_kfld_desc_t ;

kfld_nitems An integer that specifies the number of fields in the list (in other
words, the number of keys in the index being created).

key_desc An array of structures of type dhcs_kfld_desc_t. Each element of
the array contains detail on an index key column.

kfld_nitems itemsdhcs_keydesc_t
kfld_nitems
key_desc dhcs_kfld_desc_t

kfd_fld
kfd_sort_order

kfd_typeid
kfd_tfield

kfd_maxlen

. . .dhcs_kfld_desc_t
kfd_fld

kfd_sort_order

kfd_typeid
kfd_tfield

kfd_maxlen

dhcs_kfld_desc_t
kfd_fld

kfd_sort_order

kfd_typeid
kfd_tfield

kfd_maxlen

col_name col_name col_name
5-4 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
Field Descriptions

5.1.3 Field Value Lists: dhcs_fldl_val_t and Associated Structures
The following figure shows the fields in the structures that make up a field value list.

Figure 5-3: Field Value Lists: dhcs_fldl_val_t and Associated Structures

5.1.3.1 dhcs_fldl_val_t
The dhcs_fldl_val_t structure contains a list of structures that contain or will receive
data values:

kfd_field A short integer that identifies the index key field. Unlike the table field
identifiers passed to dhcs_add_table, storage systems should not mod-
ify the index key field identifier value in kfd_field.

kfd_sort_order A character that indicates the sort order specified in the SQL CREATE
INDEX statement.

kfd_maxlen A short integer that specifies the maximum length for data in the index
key. This will be the same value as for the table field that corresponds
to the index key.

kfd_tfield The field identifier for the table field that corresponds to the index key.

kfd_typeid A long integer that specifies the SQL data type. This will be the same
value as for the table field that corresponds to the index key.

col_name A null terminated character string that contains the column name. This
will be the same value as for the table field that corresponds to the index
key.

fv_nitems items

dhcs_fv_item_t
fv_field
fv_tfield

fv_data
fv_maxlen

dhcs_data_t
dt_data_type

dt_is_data_null

dt_width
dt_maxlen

dt_scale
dt_data

dhcs_fv_item_t
fv_field
fv_tfield

fv_data
fv_maxlen

dhcs_data_t
dt_data_type

dt_is_data_null

dt_width
dt_maxlen

dt_scale
dt_data

. . . dhcs_fv_item_t
fv_field
fv_tfield

fv_data
fv_maxlen

dhcs_data_t
dt_data_type

dt_is_data_null

dt_width
dt_maxlen

dt_scale
dt_data

dhcs_fldl_val_t
fv_nitems
fv_item
Dharma Systems Inc 5-5

User Guide
• The SQL engine passes a field value list that includes data values when it supplies
values to be inserted or updated in a record (dhcs_tpl_insert, dhcs_tpl_update,
dhcs_ix_insert, and dhcs_ix_delete) or to specify search criteria for retrieving
records (dhcs_ix_scan_open and dhcs_ix_scan_fetch). In these cases, the field
value list is strictly an input parameter.

• The SQL engine passes a field value list with empty data value fields for the stor-
age system to fill in with values retrieved from the appropriate table or index
record (dhcs_tpl_fetch, dhcs_tpl_scan_fetch, and dhcs_ix_scan_fetch). In these
cases, the field value list is both an input and output parameter. On input, each
element of the list includes the table or index field identifier of interest, as well as
other detail about the field. On output, the storage system supplies values in the
data value fields.

Definition
typedef struct {

 short fv_nitems ;

 dhcs_fv_item_t *fv_item ;

} dhcs_fldl_val_t ;

Field Descriptions

5.1.3.2 dhcs_fv_item_t
The dhcs_fv_item_t structure contains field identifiers for one of the fields in a field
value list, and a pointer to another structure that contains or will receive the value for
that field.

Definition
typedef struct {

 dhcs_field_t fv_field;

 dhcs_field_t fv_tfield;

 unsigned short fv_maxlen;

 dhcs_data_t *fv_data;

} dhcs_fv_item_t ;

Field Descriptions

fv_nitems Number of field values in the list.

fv_item Pointer to an array of field values (structures of type dhcs_fv_item_t).
Each element of the array contains identifiers, detail about the field,
and the actual data.

fv_field Contains the table field identifier (for dhcs_tpl routines) or index key identifier
(for dhcs_ix routines).
5-6 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
5.1.3.3 dhcs_data_t
The dhcs_data_t structure contains a field value (or, for long data types, field handles)
and data type information for one of the fields in a field value list.

Definition
typedef struct {

 dhcs_typeid_t dt_data_type;

 dh_boolean dt_is_data_null;

 unsigned short dt_maxlen;

 unsigned short dt_data_len;

 short dt_width;

 short dt_scale;

 void *dt_data;

} dhcs_data_t ;

Field Descriptions

fv_tfield Used only during dhcs_ix_scan_fetch routines, fv_tfield contains table field
identifiers for all the field values needed to satisfy a particular query.

For table fields that are also index keys, then, fv_tfield contains the table field
identifier that corresponds to the index key identifier in fv_field. If a query
requires a field value that is not also an index key, the SQL engine sets
fv_field to SQL_INVAL_FLDID to indicate there is no index key for the field

If the storage system returned a value of TRUE when the SQL engine called
dhcs_rss_get_info with an info_type of DHCS_IX_FETCH_ALL_FIELDS, the
storage system fetches values for those fields as well as the index compo-
nent fields when it processes dhcs_ix_scan_fetch.

fv_maxlen A short integer that specifies:·

- For fixed-length data types, the defined length
- For variable-length data types, the maximum length

fv_data Pointer to a structure that contains field values (or, for long data types, field
handles) and data type information.

fv_nitems Number of field values in the list.

dt_data_type A long integer that specifies the SQL data type.

dt_is_data_null A Boolean value that specifies whether the column contains a null
value. A value of TRUE indicates that the column is null.

dt_maxlen A short integer that specifies:·

- For fixed-length data types, the defined length
- For variable-length data types, the maximum length

dt_data_len A short integer that specifies, for variable-length data types only,
the actual length of the data.
Dharma Systems Inc 5-7

User Guide
dt_width A short integer that specifies the maximum number of digits for
numeric types.

dt_scale A short integer that specifies the number of digits to the right of the
decimal point for numeric types.

dt_data A pointer to storage for the data value (or, for long data types, the
field handle).
5-8 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
5.2 TABLE INTERFACES

5.2.1 dhcs_add_table
Adds a table to a storage manager, or generates an identifier for an existing table.

Syntax
extern dhcs_status_t

dhcs_add_table (

 dhcs_fld_list_t *fld_list,

 char *table_name

 dh_boolean meta_data_only,

 dhcs_fld_list_t *primary_key_list,

 dhcs_tableid_t *table_id,

 char *owner,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
INOUT fld_list
A list of field descriptions for the columns in the table.

Field definition information includes the field name, the field identifier, the field type,
and a flag that indicates whether null values are allowed. Additionally, depending on
the data type of the field, the length or the maximum length of the data type may be
provided. Before returning from dhcs_add_table, the storage manager can change the
identifiers in fld_list to any value that is appropriate for the storage system. See sec-
tion 5.1 for details on the data structures that make up a field list.

Note The SQL engine uses the sequence of field identifiers to determine col-
umn order when SQL SELECT and INSERT statements do not explicitly
specify column names. Because of this, when storage managers modify
field identifiers, they must exercise care to avoid changing the values in a
way that alters their original sequence. Consider the following table defi-
nition:

CREATE TABLE test (col1 INT, col2 INT)

If the storage manager changes the sequence of field identifiers (for
instance, if it assigns a field identifier of 2 to col1 and a field identifier of
1 to col2), then the statement INSERT INTO test VALUES (1,2) will store
the value 1 into col2 and 2 into col1.

STATUS_OK Successful completion.
Dharma Systems Inc 5-9

User Guide
Implementations must keep track of field identifiers and their corresponding field
names. The SQL engine passes only the identifier, not the name, in subsequent calls.
It is the implementation's responsibility to associate the identifier with the correct
field.

IN table_name
The name of the table that is being created. table_name will contain the name as spec-
ified in the CREATE TABLE statement.

If the CREATE TABLE statement also specified 'METADATA_ONLY' in the
STORAGE_ATTRIBUTES clause, table_name will contain the name of an existing
table in the proprietary storage system.

IN meta_data_only
A flag that indicates the SQL engine is inserting metadata into the system catalog
tables for a table that already exists in the proprietary storage system. The storage
manager should not create a new table, but instead return a table id for the SQL engine
to associate with the existing table name.

The SQL engine sets this flag to TRUE when the CREATE TABLE statement speci-
fied 'METADATA_ONLY' in the STORAGE_ATTRIBUTES clause. Unless they
support dynamic metadata (see section 5.6), implementations use this mechanism to
load metadata for existing tables. If implementations do support dynamic metadata,
they should ignore calls that set the meta_data_only flag.

IN primary_key_list
A list of primary key fields.

primary_key_list will be a subset of the fields specified in the fld_list argument. This
list will be empty unless primary key fields were specified with the CREATE TABLE
statement. A primary key is characterized by the constraint that no two records in a
table may have the same primary key value, and that no fields of the primary key may
have a null value.

Storage systems that support primary keys can use this information to create the pri-
mary key for the table. Storage systems that do not support primary keys can ignore
this information.

In addition to passing down the primary key list, the SQL engine will automatically
create a unique index on the primary key fields. Creating this index allows storage
systems that do not directly support primary keys to support them indirectly via the
index.

To create the primary-key index, the SQL engine calls dhcs_create_index (see section
5.3.1) with the unique argument set to TRUE, and the ix_type argument set to B. The
SQL engine generates a unique name for the index, prefixed with SYS_, and passes it
as the index_name argument. The components of the index will be the fields that
make up the primary key in the order that they appear in the table, and the sort order
for each index component is ascending.

OUT table_id
The table id for the table that was created or generated for an existing table.
5-10 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
The table id is a unique identifier that will be used on subsequent calls to identify the
table. The SQL engine stores this id in the SYSTABLES catalog table along with the
table name. The SQL engine reserves table identifiers below 1000 and above 32767.
Implementations must generate table identifiers within those values.

Implementations must keep track of table identifiers and their corresponding table
names. The SQL engine passes only the identifier, not the name, in subsequent calls.
It is the implementation's responsibility to associate the identifier with the correct
table.

IN owner
A character string that specifies the user issuing the CREATE TABLE statement.
Implementations can ignore this argument.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

5.2.2 dhcs_drop_table
Deletes a table from the proprietary storage system.

Syntax
extern dhcs_status_t

dhcs_drop_table (

 dhcs_tableid_t tableid,

 dh_boolean meta_data_only,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN tableid
The id for the table that is being dropped.

IN meta_data_only
A flag that indicates the SQL engine is only deleting metadata from the system catalog
tables for the specified table. The SQL engine sets this flag to TRUE when the DROP
TABLE statement specified 'METADATA_ONLY' in the STORAGE_ATTRIBUTES
clause. Unless they support dynamic metadata, implementations use this mechanism
to unload metadata for tables that have been deleted in the underlying storage system

STATUS_OK Successful completion.
Dharma Systems Inc 5-11

User Guide
through means other than the Dharma SDK. If implementations do support dynamic
metadata, they should ignore calls that set the meta_data_only flag.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
dhcs_drop_table is called as a direct result of the DROP TABLE statement. Tableid
serves to identify the table to be dropped. By calling dhcs_drop_table, the SQL
engine is informing the storage system that the table is no longer needed, and that it
effectively may be destroyed.

5.2.3 dhcs_tpl_close
Closes a table that was opened for non-scan operations.

Syntax
extern dhcs_status_t

dhcs_tpl_close (

 void *tpl_hdl,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN tpl_hdl
A handle for the table, as returned by dhcs_tpl_open.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
Closes a table that was opened within a storage manager.

STATUS_OK Successful completion.
5-12 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
5.2.4 dhcs_tpl_delete
Deletes a record from a table.

Syntax
extern dhcs_status_t

dhcs_tpl_delete (

 void *tpl_hdl,

 void *tid,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN tpl_hdl
A handle for the table, as returned by dhcs_tpl_open.

IN tid
The tid for the record to be deleted.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
dhcs_tpl_delete deletes a record from a table. The tid argument identifies the record to
be deleted. Once a record is deleted, the tid assigned to it may be assigned to a new
record.

After calling dhcs_tpl_delete, the SQL engine will call dhcs_rss_get_info with the
DHCS_IX_UPD_REQUIRED flag:

• If TRUE is returned, then the SQL engine will update any corresponding indexes
appropriately.

• If FALSE is returned, then the SQL engine assumes that the storage system will
update the corresponding indexes during the execution of dhcs_tpl_delete.

5.2.5 dhcs_tpl_fetch
Fetches a specific record from a table.

STATUS_OK Successful completion.

SQL_NOT_FOUND If the tid does not identify a valid record.
Dharma Systems Inc 5-13

User Guide
Syntax
extern dhcs_status_t

dhcs_tpl_fetch (

 void *tpl_hdl,

 void *tid,

 dhcs_tpl_fetch_hint_t fetch_hint,

 dhcs_fldl_val_t *field_values,

 void*conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN tpl_hdl
A handle for the table, as returned by dhcs_tpl_open.

IN tid
The tid that identifies the record to be fetched

IN fetch_hint
Indicates if the record is being fetched in the context of a SQL statement which only
performs read operations or if it is being executed in the context of a SQL statement
that could perform writes. fetch_hint will be one of the following values:

INOUT field_values
A field value list in which the storage system returns field values fetched for the
record.

If any of the values are for columns defined with LONG VARCHAR or LONG VAR-
BINARY data types, then the field values for those columns do not contain actual
data. For such columns, on output, the storage manager supplies a field handle that
identifies storage for the data.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the

STATUS_OK Successful completion.

SQL_NOT_FOUND If the tid does not identify a valid record.

DHCS_TPL_FH_READ The record being fetched is not a candidate for being
updated in the context of the current SQL statement.

DHCS_TPL_FH_WRITE The record being fetched is a candidate for being
updated in the context of the current SQL statement.
5-14 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
dhcs_tpl_fetch fetches a record from a table. Tid identifies the record within the table
that is to be fetched.

field_values is a pointer to a list of field items. field_values may contain field items
for all of the fields within the record, or it may contain field items for a subset of the
fields.

Each field item is a structure of type dhcs_fv_item_t. Each field-item structure con-
tains a field id that identifies a field within the record whose value is to be returned.
Each field-item structure also points to another structure, of type dhcs_data_t, to store
the field value.

Using the field id, the storage system should extract the appropriate field value (or, for
long data types, the field handle) from the retrieved record and store it in the
dhcs_data_t structure.

fetch_hint indicates whether the record that is being fetched is a candidate for being
updated in the context of the current SQL statement. A storage system may wish to
use this information when making concurrency control decisions (locking) relative to
the record being fetched.

Note that fetch_hint is in fact just a hint. It is strictly relative to the current SQL state-
ment. Even if fetch_hint is set to DHCS_TPL_FH_READ, it does not imply that the
record being fetched was not already updated earlier in the transaction, or that it will
not be updated at some future point during the execution of the transaction.

5.2.6 dhcs_tpl_insert
Inserts a record into a table.

Syntax
extern dhcs_status_t

dhcs_tpl_insert (

 void *tpl_hdl,

 dhcs_fldl_val_t *field_values,

 void * tid,

 void *conn_hdl

) ;

Returns
dhcs_status_t

STATUS_OK Successful completion.
Dharma Systems Inc 5-15

User Guide
Arguments
IN tpl_hdl
A handle for the table, as returned by dhcs_tpl_open.

INOUT field_values
The list of field values for the record that is to be inserted into the table. A value
exists for each field in the table.

If any of the values are for columns defined with LONG VARCHAR or LONG VAR-
BINARY data types, then the field values for those columns do not contain actual
data. For such columns, the data_t component of field_values is both an input and
output argument. On output, the storage manager supplies a field handle that identi-
fies storage for the data. (The implementation should initialize this storage, since
there is no guarantee that the ODBC application will actually request the SQL engine
to call dhcs_put_data to store data.)

INOUT tid
The tuple identifier (tid) assigned to the record that the storage system inserted.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
dhcs_tpl_insert is used to insert a record into a table. field_values contains the list of
field values (or, for long data types, storage for field handles) for the record to be
inserted. There is one field value for each field that makes up the table. The fields are
ordered in the list by their field id.

The storage system must assign a tuple identifier (tid) to the record that is inserted.
This tid is returned via the tid argument. The tid argument is an INOUT argument. On
input it will contain a NULL_TID value that is appropriate for the storage system that
is being accessed. The SQL engine allocated the NULL_TID by calling
dhcs_alloc_tid. On output, the tid must contain a tid value that can be used by the
SQL engine to relocate the record that was inserted. The SQL engine may use the tid
on subsequent calls to other functions to identify the record that was inserted.

Note that the SQL engine imposes no requirement on a storage manager relative to the
order of records within a table. The storage manager determines a new record is
inserted into the table relative to other, already-existing records.

After calling dhcs_tpl_insert, the SQL engine will call dhcs_rss_get_info with the
DHCS_IX_UPD_REQUIRED flag:

• If TRUE is returned, then the SQL engine will update any corresponding indexes
appropriately by calling dhcs_ix_insert.

• If FALSE is returned, then the SQL engine assumes that the storage system will
update the corresponding indexes during the execution of dhcs_tpl_insert. If
5-16 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
inserting the record into the associated indexes would result in a duplicate index
key value for a unique index, then the record should not be stored in the table or
the index, and an error returned.

5.2.7 dhcs_tpl_open
Opens a table for non-scan operations.

Syntax
extern dhcs_status_t

dhcs_tpl_open (

 dhcs_tableid_t tableid,

 void **tpl_hdl,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN tableid
The identifier for the table that is being opened for scanning. The SQL engine obtains
tableid from the SYSTABLES system catalog table.

OUT tpl_hdl
A handle for the table. The format of the handle is specific to the storage system. The
SQL engine passes the handle in subsequent calls to dhcs_tpl_insert, dhcs_tpl_delete,
dhcs_tpl_update, and dhcs_tpl_close.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
The SQL engine calls dhcs_tpl_open to open a table for non-scan operations. In
response, the storage manager makes sure the table is open and supplies a handle that
the SQL engine passes to subsequent routines.

Although the SQL engine presumes that the table specified by tableid is open after
calling dhcs_tpl_open, the storage manager should not automatically open files or
load data structures each time the SQL engine calls this function. This is because pre-
vious SQL statements may have resulted in calls to functions that already opened the
table. Instead, the storage manager should use whatever file-caching mechanism

STATUS_OK Successful completion.
Dharma Systems Inc 5-17

User Guide
exists in the underlying storage system to check if the table is already open, and open
it only if necessary.

5.2.8 dhcs_tpl_scan_close
Closes a table that was opened for scanning.

Syntax
extern dhcs_status_t

dhcs_tpl_scan_close (

 void *tpl_scan_hdl,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN tpl_scan_hdl
A handle for the scan, as returned by dhcs_tpl_scan_open.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
Closes a table that was opened for scanning within a storage manager.

5.2.9 dhcs_tpl_scan_fetch
Fetches the next record from a table.

Syntax
extern dhcs_status_t

dhcs_tpl_scan_fetch (

 void *tpl_scan_hdl,

 dhcs_fldl_val_t *fld_values,

 void *tid,

 void *conn_hdl

) ;

STATUS_OK Successful completion.
5-18 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
Returns
dhcs_status_t

Arguments
IN tpl_scan_hdl
A handle for the scan, as returned by dhcs_tpl_scan_open.

INOUT field_values
A field value list in which the storage system returns field values fetched for the
record.

If any of the values are for columns defined with LONG VARCHAR or LONG VAR-
BINARY data types, then the field values for those columns do not contain actual
data. For such columns, on output, the storage manager supplies a field handle that
identifies storage for the data.

OUT tid
A pointer to a tuple identifier for the record that was fetched.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
dhcs_tpl_scan_fetch fetches the next record from a table scan. When a table scan is
opened, the scan is positioned before the first record of the table. Each call to
tpl_scan_fetch, results in the scan being moved to the next record of the table, and the
field values from the record being returned.

field_values is a pointer to a list of field items. Each field item identifies a field within
the retrieved record whose value is to be returned, and provides a location to store the
field value (or, for long data types, the field handle). If field_values is NULL, it indi-
cates that no field values are to be returned for the record. If field_values is non-
NULL, then a value must be returned for each field for which a field item is specified.
field_values may contain a field item for each field in the record, or it may contain
field items for a subset of the fields.

Tid provides a location to return the tid for the retrieved record. If tid is a NULL
pointer, then it indicates that the tid value for the record is not to be returned. If tid, is
non-NULL pointer, then a value must be returned for the tid.

5.2.10 dhcs_tpl_scan_open
Opens a table for scanning when no indexes are available.

STATUS_OK Successful completion.

SQL_NOT_FOUND When no more records exist in the scan.
Dharma Systems Inc 5-19

User Guide
Syntax
extern dhcs_status_t

dhcs_tpl_scan_open (

 dhcs_tableid_t tableid,

 dhcs_tpl_fetch_hint_t fetch_hint,

 void **tpl_scan_hdl,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN tableid
The identifier for the table that is being opened for scanning. The SQL engine obtains
tableid from the SYSTABLES system catalog table.

IN fetch_hint
Indicates if the scan is being performed in the context of an update statement:

fetch_hint indicates whether the scan is in the context of an update statement. It indi-
cates that the SQL engine may ultimately update a selected record via the
dhcs_tpl_update or delete a selected record via the dhcs_tpl_delete member functions.
This flag may be used by storage systems whose concurrency control policy (locking
policy) needs to differentiate or wishes to differentiate between reading a record and
reading a record for update.

OUT tpl_scan_hdl
A handle for the scan. The format of the handle is specific to the storage system. The
SQL engine passes the handle in subsequent calls to dhcs_tpl_scan_fetch and
dhcs_tpl_scan_close.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

STATUS_OK Successful completion.

DHCS_TPL_FH_READ The table is being scanned in the context of a read
statement

DHCS_TPL_FH_WRITE The table is being scanned and selected records may
be updated
5-20 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
Description
The SQL engine calls dhcs_tpl_scan_open to open a table for scanning. In response,
the storage manager makes sure the table is open and supplies a scan handle that the
SQL engine passes to subsequent scan routines.

Although the SQL engine presumes that the table specified by tableid is open after
calling dhcs_tpl_scan_open, the storage manager should not automatically open files
or load data structures each time the SQL engine calls this function. This is because
previous SQL statements may have resulted in calls to functions that already opened
the table. Instead, the storage manager should use whatever file-caching mechanism
exists in the underlying storage system to check if the table is already open, and open
it only if necessary.

5.2.11 dhcs_tpl_update
Updates values in an existing table record.

Syntax
extern dhcs_status_t

dhcs_tpl_update (

 void *tpl_hdl,

 void *tid,

 dhcs_fldl_val_t *update_field_values,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN tpl_hdl
A handle for the table, as returned by dhcs_tpl_open.

IN tid
The tid that identifies the record to be updated.

IN update_field_values
The list of field values for the record that is to be updated. A value exists for each
field in the table that is to be updated.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK

STATUS_OK Successful completion.

SQL_NOT_FOUND If the tid does not identify a valid record.
Dharma Systems Inc 5-21

User Guide
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
dhcs_tpl_update updates a record in a table. Tid identifies the record within the table
that is to be updated. update_field_values contains a list of field values items. Each
field value item identifies a field to be updated and the new value for the field. Note
that only fields to be updated are contained in the list.

For each field that is to be updated the value of that field is replaced by the value that
was extracted from update_field_values.

After calling dhcs_tpl_delete, the SQL engine will call dhcs_rss_get_info with the
DHCS_IX_UPD_REQUIRED flag:

• If TRUE is returned, then the SQL engine will update any corresponding indexes
appropriately.

• If FALSE is returned, then the SQL engine assumes that the storage system will
update the corresponding indexes during the execution of dhcs_tpl_update.

5.2.12 dhcs_tpl_get_card
Returns a cardinality hint of the table

Syntax
extern dhcs_status_t

dhcs_tpl_get_card (

 void *tpl_hdl,

 dhcs_uint32_t *card,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN tpl_hdl
A handle for the table, as returned by dhcs_tpl_open.

OUT card
A hint of the cardinality of the table

IN conn_hdl

STATUS_OK Successful completion.

SQL_ERR_NOTYET Indicates that the cardinality value could not be
generated.
5-22 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
dhcs_tpl_get_card is used to get a hint of the cardinality of the table. Upon successful
completion of this routine, card should contain the number of rows in the table. Note
that the card value is only an estimate of the cardinality of the table. To what extent a
storage manager goes to determine the actual cardinality is implementation defined.
Returning a status of SQL_ERR_NOTYET indicates that a cardinality value is not
available. In this case, the SQL engine will use a default value.
Dharma Systems Inc 5-23

User Guide
5.3 INDEX INTERFACES

5.3.1 dhcs_create_index
Creates an index for a table within a storage manager, or generates an identifier for an
existing index.

Syntax
extern dhcs_status_t

dhcs_create_index (

 dhcs_tableid_t tableid,

 dh_boolean unique,

 dh_boolean meta_data_only,

 char ix_type,

 dhcs_keydesc_t *keydesc,

 char *index_name,

 dhcs_indexid_t *indexid,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN tableid
The table for which the index is being created.

IN unique
A flag that indicates whether records in the index must be unique. If TRUE, the index
is unique. If FALSE, then the index allows duplicate records.

IN meta_data_only
A flag that indicates the SQL engine is inserting metadata into the system catalog
tables for an index that already exists in the proprietary storage system. The storage
manager should not create a new index, but instead return an index id for the SQL
engine to associate with the existing index name.

The SQL engine sets this flag to TRUE when the CREATE INDEX statement speci-
fied 'METADATA_ONLY' in the STORAGE_ATTRIBUTES clause. Unless they
support dynamic metadata (see section 3.3.8), implementations use this mechanism to
load metadata for existing indexes. If implementations do support dynamic metadata,
they should ignore calls that set the meta_data_only flag.

STATUS_OK Successful completion.
5-24 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
IN ix_type
A flag that indicates the type of index. The SQL engine passes the TYPE argument
specified in an application's SQL CREATE INDEX statement. If the CREATE
INDEX statement did not include the TYPE argument, ix_type is set to B.

The ix_type argument does not imply any particular indexing technique. It is an arbi-
trary flag that allows the storage manager to indicate differing support for multiple
types of indexes. The SQL engine calls dhcs_rss_get_info for each index type, and
the storage manager can respond with different index properties for each type. (For
instance, that different index types support different comparison operators.)

Note If the data type of the index key column is LONG VARCHAR or LONG
VARBINARY, the SQL engine generates an error if the index type sup-
ports any operators other than DHCS_IXOP_CONTAINS and
DHCS_IXOP_NOTCNTNS. This restriction means that SQL CREATE
INDEX statements that specify long data-type columns as index keys
must also specify the TYPE argument.

The SQL engine also passes the ix_type value when it opens the index through the
dhcs_ix_scan_open or dhcs_ix_open routines.

IN keydesc
A description of the index key fields. Field information includes a key-field identifier,
the corresponding field identifier in the table, data type, maximum length, and sort
order.

IN index_name
The name of the index that is being created. index_name will contain the name as
specified in the CREATE INDEX statement.

If the CREATE INDEX statement also specified 'METADATA_ONLY' in the
STORAGE_ATTRIBUTES clause, index_name will contain the name of an existing
index in the proprietary storage system.

OUT indexid
The id assigned by the storage system for the created index.

The index id is a unique identifier that will be used on subsequent calls to identify the
index. The SQL engine stores this id in the SYSINDEXES catalog table along with
the index name. The SQL engine reserves index identifiers below 1000 and above
32767. Implementations must generate index identifiers within those values.

Implementations must keep track of index identifiers and their corresponding index
names. The SQL engine passes only the identifier, not the name, in subsequent calls.
It is the implementation's responsibility to associate the identifier with the correct
index.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.
Dharma Systems Inc 5-25

User Guide
Description
Creates an index for a table. Tableid identifies the table for which the index is being
created.

Keydesc provides the descriptive information that is needed to create the index,
including the number of components in the index and the sort order for records in the
index.

This routine returns an indexid. The indexid is a number generated by the storage sys-
tem that will be used on subsequent calls to identify the index. The SQL engine will
store this id in the sysindexes catalog table along with index name.

5.3.2 dhcs_drop_index
Deletes an index from the proprietary storage system.

Syntax
extern dhcs_status_t

dhcs_drop_index (

 dhcs_tableid_t tableid,

 dhcs_indexid_t indexid,

 dh_boolean meta_data_only,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN tableid
The id of the table for the index that is being dropped.

IN indexid
The id of the index that is being dropped.

IN meta_data_only
A flag that indicates the SQL engine is only deleting metadata from the system catalog
tables for the specified index. The SQL engine sets this flag to TRUE when the
DROP INDEX statement specified 'METADATA_ONLY' in the
STORAGE_ATTRIBUTES clause. Unless they support dynamic metadata (see sec-
tion 3.3.8), implementations use this mechanism to unload metadata for indexes that
have been deleted in the underlying storage system through means other than the
Dharma SDK. If implementations do support dynamic metadata, they should ignore
calls that set the meta_data_only flag.

STATUS_OK Successful completion.
5-26 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
dhcs_drop_index is called as a direct result of the drop index statement. Tableid and
indexid taken together serve to identify the index to be dropped. When the index is
dropped, the SQL engine removes all knowledge of the index from the catalog tables.
By calling dhcs_drop_index, the SQL engine is informing the storage system that the
index is no longer needed, and that it effectively may be destroyed.

5.3.3 dhcs_ix_close
Closes an index after updating.

Syntax
extern dhcs_status_t

dhcs_ix_close (

 void *ix_hdl,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN ix_hdl
A handle for the index, as returned by dhcs_ix_open.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
Closes an index within a storage manager.

5.3.4 dhcs_ix_delete
Deletes a record from an index.

STATUS_OK Successful completion.
Dharma Systems Inc 5-27

User Guide
Syntax
extern dhcs_status_t

dhcs_ix_delete (

 void *ix_hdl,

 dhcs_fldl_val_t *index_values,

 void *tid,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN ix_hdl
A handle for the index, as returned by dhcs_ix_open.

IN index_values
The list of index key component values for the record that is to be deleted from the
index. A value exists for each component in the index.

If any of the values are for columns defined with LONG VARCHAR or LONG VAR-
BINARY data types, then the field values for those columns do not contain actual
data. Instead, the data_t component of field_values contains a field handle that identi-
fies storage for the data.

IN tid
The tid of the record within the table associated with this index that the index key
component values correspond to.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
dhcs_ix_delete is used by the SQL engine to delete an index record from an index.
index_values contains the list of index key component values (or, for long data types,
field handles) for the record to be deleted. Tid identifies the record within the table
associated with this index that the index key component values correspond to. The
index key component values and the tid values taken together form an index record.

Within index_values there is one component value for each index key component that
makes up the index. Each component value is represented as a field item. The field
items are ordered within index_values by their component id.

STATUS_OK Successful completion.
5-28 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
The record to be deleted from the index is the one whose component key values match
the ones provided in index_values, and whose tid value matches the value provided by
tid.

Before calling dhcs_ix_delete, the SQL engine will call dhcs_rss_get_info with the
DHCS_IX_UPD_REQUIRED flag. If TRUE is returned, then the SQL engine will
execute the ix_delete.

If FALSE is returned, then the SQL engine will not call dhcs_ix_delete. Instead it will
assume that the storage system will update the corresponding indexes during the exe-
cution of the dhcs_tpl_delete function.

5.3.5 dhcs_ix_insert
Inserts a record into an index.

Syntax
extern dhcs_status_t

dhcs_ix_insert (

 void *ix_hdl,

 dhcs_fldl_val_t *index_values,

 void *tid,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN ix_hdl
A handle for the index, as returned by dhcs_ix_open.

IN index_values
The list of index key component values for the record that is to be inserted into the
index. A value exists for each component in the index.

If any of the values are for columns defined with LONG VARCHAR or LONG VAR-
BINARY data types, then the field values for those columns do not contain actual
data. Instead, the data_t component of field_values contains a field handle that identi-
fies storage for the data.

IN tid
The tuple identifier of the table record for which this index entry is being inserted.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the

STATUS_OK Successful completion.
Dharma Systems Inc 5-29

User Guide
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
dhcs_ix_insert is used by the SQL engine to insert an index record into an index.
index_values contains the list of values (or, for long data types, field handles), one for
each component of the index.

Tid identifies the record within the table associated with this index that the index key
component values correspond to. The index key component values and the tid values
taken together form an index record.

When inserting the index record into the index, the record must logically be stored
according to the criteria that was established when the index was created. If duplicate
records are not allowed, the storage system must compare the key component values
of the index record to the key component values of records already contained within
the index. If a record exists with the same values, then the storage system should
return an error.

Note In the case where the storage system determines a duplicate record exists,
the storage system is also responsible for removing the table record
already inserted during execution of the dhcs_tpl_insert routine. The
SQL engine does not call dhcs_tpl_delete to enforce the constraint against
duplicate records. The storage system should remove the table record
during its processing of the dhcs_abort_trans routine.

Within index_values there is one component value for each index key component that
makes up the index. Each component value is represented as a field item. The field
items are ordered within index_values by their component id.

The details of how an index record is stored within an index is storage manager spe-
cific, but it must be stored in such a way that the index component key values, along
with the associated tid, can be retrieved as a unit via the dhcs_ix_scan_fetch function.

Before calling ix_insert, the SQL engine will call dhcs_rss_get_info with the
DHCS_IX_UPD_REQUIRED flag.

• If TRUE is returned, then the SQL engine will execute dhcs_ix_insert after it exe-
cutes dhcs_tpl_insert.

• If FALSE is returned, then the SQL engine will not call dhcs_ix_insert. Instead it
assumes that the storage system will update the corresponding indexes during the
execution of insert and update functions.

5.3.6 dhcs_ix_open
Opens an index for updating.

Syntax
extern dhcs_status_t

dhcs_ix_open (
5-30 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
 dhcs_tableid_t tableid,

 dhcs_indexid_t indexid,

 char ix_type,

 void **ix_hdl,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN tableid
The identifier for the table that corresponds to the index that is being opened.

IN indexid
The identifier for the index that is being opened.

IN ix_type
A flag that indicates the type of index. The SQL engine passes the same value here as
it passed to the dhcs_create_index function for this index. See section 5.3.1 for
details.

OUT ix_hdl
A handle for the index. The format of the handle is specific to the storage system.
The SQL engine passes the handle in subsequent calls to dhcs_ix_insert,
dhcs_ix_delete, and dhcs_ix_close.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
The SQL engine calls dhcs_ix_open to open an index for update operations. In
response, the storage manager makes sure the index is open and supplies a handle that
the SQL engine passes to subsequent index update routines.

The tableid and indexid arguments taken in combination identify the particular index
to be opened. The SQL engine obtains indexid and tableid from the SYSINDEXES
catalog table.

Although the SQL engine presumes that the index specified by indexid is open after
calling dhcs_tpl_open, the storage manager should not automatically open files or
load data structures each time the SQL engine calls this function. This is because pre-
vious SQL statements may have resulted in calls to functions that already opened the

STATUS_OK Successful completion.
Dharma Systems Inc 5-31

User Guide
index. Instead, the storage manager should use whatever file-caching mechanism
exists in the underlying storage system to check if the index is already open, and open
it only if necessary.

5.3.7 dhcs_ix_scan_close
Closes an index which was opened for scanning.

Syntax
extern dhcs_status_t

dhcs_ix_scan_close (

 void *ix_scan_hdl,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN ix_scan_hdl
A handle for the index scan, as returned by dhcs_ix_scan_open.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
Closes an index that was opened for scanning within a storage manager.

5.3.8 dhcs_ix_scan_fetch
Fetches the next record in an index scan.

Syntax
extern dhcs_status_t

dhcs_ix_scan_fetch (

 void *ix_scan_hdl,

 dhcs_ix_oper_t operator,

 dhcs_fldl_val_t *index_search_vals,

 dhcs_fldl_val_t *field_values,

 void *tid,

STATUS_OK Successful completion.
5-32 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN ix_scan_hdl
A handle for the index scan, as returned by dhcs_ix_scan_open.

IN operator
Indicates the type of scan to perform.

The SQL engine supplies the same value here as on the corresponding call to
dhcs_ix_scan_open. It is up to the storage manager to decide whether to process the
operator value during execution of dhcs_ix_scan_open or dhcs_ix_scan_fetch. See
Table 5-2: on page 5-38 for a list of the valid operators and their meanings.

IN index_search_vals
The list of values to use for comparison when searching for an index record. The SQL
engine supplies the same values here as on the corresponding call to
dhcs_ix_scan_open. (The search values for CONTAINS predicates are a special case.
See the CONTAINS notes on page 5–51 for more detail.)

INOUT field_values
A field value list in which the storage system returns field values fetched for the index
record that meets the criteria specified by operator and index_search_vals.

If any of the values are for columns defined with LONG VARCHAR or LONG VAR-
BINARY data types, then the field values for those columns do not contain actual
data. For such columns, on output, the storage manager supplies a field handle that
identifies storage for the data.

INOUT tid
A pointer to a location to store the tid for the record that was fetched.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
ix_scan_fetch fetches the next record from an index based on the operator and com-
parison values stored in index_search_vals.

STATUS_OK Successful completion.

SQL_NOT_FOUND When no more records exist.
Dharma Systems Inc 5-33

User Guide
When an index scan is opened, the scan is positioned before the first record of the
index that matches the comparison values based on the operator. With each call to
dhcs_ix_scan_fetch, the storage manager:

• Returns values to non-null members of the field_values list

• Returns the tid for the record, if its input value is not null

• Moves the scan to the next record of the index that matches the comparison crite-
ria

field_values is a pointer to a list of field items. Each field item identifies a field within
the retrieved index record whose value is to be returned, and provides a location to
store the field value (or, for long data types, field handles). If field_values is NULL, it
indicates that no field values are to be returned for the index record. If field_values is
non-NULL, then a value must be returned for each field for which a field item is spec-
ified.

The field items are ordered within the field_values structure by their index key id. The
index key id identifies the index key field to be retrieved, and the dhcs_data_t struc-
ture provides a location for storing the retrieved value. Using the index field id, the
storage system should extract the appropriate field value from the retrieved index
record and store it in the dhcs_data_t structure.

The SQL engine may set the index key id to SQL_INVAL_FLDID rather than to a
valid index key id. This means the storage system indicated it supports the fetch all
fields feature by returning TRUE when the SQL engine called dhcs_rss_get_info with
an info_type of DHCS_IX_FETCH_ALL_FIELDS. In that case, the field item repre-
sents a field which is not part of the index, but is a field within the table that the index
being scanned is associated with. (See the following discussion.)

Tid provides a location to return the tid for the retrieved record. If tid is NULL, it
indicates that the tid value for the record is not to be returned. If tid is non-NULL,
then a value must be returned for the tid.

Fetching All Fields Through Index Scans: DHCS_IX_FETCH_ALL_FIELDS

A storage system typically returns a subset of the index key component fields and a
tuple identifier (tid) in response to a dhcs_ix_scan_fetch call. If the SQL engine needs
field values beyond those that make up the index key, then it specifies the appropriate
tid when calling dhcs_tpl_fetch to get the remaining field values for the row.

However, many storage systems, hierarchical systems in particular, have direct access
to all the field values of a row when performing a dhcs_ix_scan_fetch call. For cases
where the SQL engine needs field values beyond the fields that make up the index key,
a significant performance advantage is possible if all the field values that are needed
are returned in response to a dhcs_ix_scan_fetch rather than just the index key fields.
The performance gain occurs because the dhcs_tpl_fetch call is eliminated.

The SQL engine determines support for obtaining field values in this manner through
the DHCS_IX_FETCH_ALL_FIELDS property. A storage system indicates support
by returning TRUE for the DHCS_IX_FETCH_ALL_FIELDS info type of
dhcs_rss_get_info.
5-34 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
The SQL engine identifies all the fields that it needs, whether they are index keys or
not, in the field_values argument of the dhcs_ix_scan_fetch call. field_values is a
structure of type dhcs_fldl_val_t, itself a list of structures of type dhcs_fv_item_t (see
page 5-6). Each dhcs_fv_item_t structure represents a field value to be returned. The
list contains two parts. The first part identifies index key fields (and their correspond-
ing table fields) and the second part identifies the additional table fields that are not
index key fields:

• In the first part, the fv_field element of the dhcs_fv_item_t structure contains the
index key id. The fv_tfield element contains the table field id that corresponds to
the index key id in fv_field.

• In the second part, the fv_field element is set to SQL_INVAL_FLDID to indicate
there is no index key for this field. The fv_tfield element contains the table field
id.

The index and table fields to be retrieved can thus be identified by comparing the
fv_field element to SQL_INVAL_FLDID. Note that the second part of the list could
be empty if the query refers only to the index key fields.

To process the field_values list, the stub implementation must loop through each ele-
ment of the list:

• Use the fv_field value to identify desired index key fields and store their values in
the dhcs_data_t structure.

• Use the fv_tfield value to identify desired table fields and store their values in the
dhcs_data_t structure.

The following examples show how values in the data structures used by
dhcs_ix_scan_fetch would appear after some specific SQL statements:

Example 5-4: Eliminating Tuple Scans Using DHCS_IX_FETCH_ALL_FIELDS

create table t1(c1 int, c2 int, c3 int, c4 int, c5 int, c6 int)

create index t1_idx on t1(c1, c2 , c3)

insert into t1 values(10, 20, 30, 40, 50, 60)

commit work

select * from t1 where c1 = 10

dhcs_ix_scan_fetch(

index_values :

 fv_field = 0, fv_tfield = 0, data = 10

field_values :

 fv_field = 0, fv_tfield = 0, data = 10

 fv_field = 1, fv_tfield = 1, data = 20

 fv_field = 2, fv_tfield = 2, data = 30

 fv_field = 65535, fv_tfield = 3, data = 40

 fv_field = 65535, fv_tfield = 4, data = 50

 fv_field = 65535, fv_tfield = 5, data = 60

ixoper = 0 (DHCS_IXOP_EQ)

 ...

)

Dharma Systems Inc 5-35

User Guide
C1 C2 C3 C4 C5 C6

-- -- -- -- -- --

10 20 30 40 50 60

1 record selected

select c1, c2, c5, c6 from t1 where c1 = 10

dhcs_ix_scan_fetch(

index_values :

 fv_field = 0, fv_tfield = 0, data = 10

field_values :

 fv_field = 0, fv_tfield = 0, data = 10

 fv_field = 1, fv_tfield = 1, data = 20

 fv_field = 65535, fv_tfield = 4, data = 50

 fv_field = 65535, fv_tfield = 5, data = 60

ixoper = 0 (DHCS_IXOP_EQ)

 ...

)

C1 C2 C5 C6

-- -- -- --

10 20 50 60

1 record selected

select c2, c3 from t1

dhcs_ix_scan_fetch(

index_values :

 fv_field = 0, fv_tfield = 0, data = NULL

 fv_field = 1, fv_tfield = 1, data = NULL

 fv_field = 2, fv_tfield = 2, data = NULL

field_values :

 fv_field = 1, fv_tfield = 1, data = 20

 fv_field = 2, fv_tfield = 2, data = 30

ixoper = 6 (DHCS_IXOP_FIRST)

 ...

)

C2 C3

-- --

20 30

1 record selected
5-36 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
5.3.9 dhcs_ix_scan_open
Opens an index for scanning.

Syntax
extern dhcs_status_t

dhcs_ix_scan_open (

 dhcs_tableid_t tableid,

 dhcs_indexid_t indexid,

 char ix_type,

 dhcs_ix_oper_t operator,

 short num_field_values,

 dhcs_fldl_val_t *index_search_vals,

 short index_scan_hint,

 dhcs_tpl_fetch_hint_t fetch_hint,

 void **ix_scan_hdl,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN tableid
The identifier for the table that corresponds to the index that is being opened.

IN indexid
The identifier for the index that is being opened.

IN ix_type
A flag that indicates the type of index. The SQL engine passes the same value here as
it passed to the dhcs_create_index function for this index. See page 5-24 for details.

IN operator
A comparison operator that indicates the type of scan to perform. The operators spec-
ify a condition that is true or false about a given row or group of rows. They corre-
spond to SQL predicates. The operator is one of the list returned by the storage
manager in response to the DHCS_IX_PUSH_DOWN_RESTRICTS info type argu-
ment of dhcs_rss_get_info. Table 5–2 lists the possible values for the index operators.
See Index Operator Notes on page 5-42 for more detail.

STATUS_OK Successful completion.
Dharma Systems Inc 5-37

User Guide
The SQL engine also passes the operator when it calls dhcs_ix_scan_fetch. The stor-
age manager can process it during execution of either routine.

IN num_field_values
The number of index components used in the predicate for which the scan is to return
records. This varies from zero (for DHCS_IXOP_FIRST or DHCS_IXOP_LAST) up
to the number of components in the index.

The implication of this number depends on the operator. For instance, a
num_field_values of 3 means:

• For basic predicates (DHCS_IXOP_EQ, DHCS_IXOP_GT, DHCS_IXOP_GE,
DHCS_IXOP_LE, DHCS_IXOP_LT, and DHCS_IXOP_NE), there are 3 values

Table 5-2: Index Scan Comparison Operators

Operator Type of Scan Number of Comparison Values

DHCS_IXOP_EQ Equal One for each index component used

DHCS_IXOP_GT Greater than One for each index component used

DHCS_IXOP_GE Greater than or
equal

One for each index component used

DHCS_IXOP_LE Less than or equal One for each index component used

DHCS_IXOP_LT Less than One for each index component used

DHCS_IXOP_NE Not equal One for each index component used

DHCS_IXOP_BET Inclusive between Two for each index component used

DHCS_IXOP_BET_IE Low-end inclusive
between

Two for each index component used

DHCS_IXOP_BET_EI High-end inclusive
between

Two for each index component used

DHCS_IXOP_BET_EE Exclusive between Two for each index component used

DHCS_IXOP_NOTBET Not between (inclu-
sive)

Two for each index component used

DHCS_IXOP_FIRST Start at first record None

DHCS_IXOP_LAST Return last record None

DHCS_IXOP_IN Equal to any of a
list of one or more
values

One for each index component used
and each value in the list

DHCS_IXOP_NOTIN Not equal to any of
a list of one or
more values

One for each index component used
and each value in the list

DHCS_IXOP_CONTAINS Storage-manager
defined

One for each index component used

DHCS_IXOP_NOTCNTNS Storage-manager
defined

One for each index component used
5-38 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
in index_search_vals. A predicate for a DHCS_IXOP_EQ operator would be of
the form:

 A = index_search_val1 AND B = index_search_val2 AND C + = index_search_val3

• For between operators (DHCS_IXOP_BET, DHCS_IXOP_BET_IE,
DHCS_IXOP_BET_EI, DHCS_IXOP_BET_EE, and DHCS_IXOP_NOTBET),
there are 6 values in index_search_vals, and the predicate is of the form:

 A BETWEEN index_search_val1 AND index_search_val2 AND

 B BETWEEN index_search_val3 AND index_search_val4 AND

 C BETWEEN index_search_val5 AND index_search_val6

• For DHCS_IXOP_IN and DHCS_IXOP_NOTIN, that there are 3 sets of values
(for these operators, num_field_values does not imply the number of values in the
sets) and the predicate is of the form:

 A IN (index_search_val1 , index_search_val2 , ...) AND

 B IN (index_search_valx, ...) AND

 C IN (index_search_valy, ...)

• For DHCS_IXOP_CONTAINS and DHCS_IXOP_NOTCNTNS, there are 3 val-
ues in index_search_vals. A predicate for a DHCS_IXOP_CONTAINS operator
would be of the form:

 A CONTAINS 'index_search_val1' AND

 B CONTAINS 'index_search_val2' AND

 C CONTAINS 'index_search_val3'

Although the number of fields represented in the predicate can be derived,
index_search_vals, num_field_values supplies it directly.

IN index_search_vals
The list of values to use for comparison when searching for an index record. The SQL
engine passes the same list when it calls dhcs_ix_scan_fetch. The storage manager
can process the values during execution of either routine. (The search values for
CONTAINS predicates are a special case.

IN index_scan_hint
Indicates if fixed length keys are used.

IN fetch_hint
Indicates whether the scan is being performed in the context of an update statement:

fetch_hint indicates that a selected index record may be updated via the
dhcs_ix_insert, dhcs_ix_delete, dhcs_tpl_update, or the dhcs_tpl_delete functions.
This flag may be used by certain storage managers whose concurrency control policy

DHCS_TPL_FH_READ The table is being scanned in the context of a read
statement

DHCS_TPL_FH_WRITE The table is being scanned and selected records may
be updated
Dharma Systems Inc 5-39

User Guide
(locking policy) needs to differentiate or wishes to differentiate between reading a
record and reading a record for update.

OUT ix_scan_hdl
A handle for the index scan. The format of the handle is specific to the storage sys-
tem. The SQL engine passes the handle in subsequent calls to dhcs_ix_scan_fetch and
dhcs_ix_scan_close.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See page 5-87 for more detail.

Description
The SQL engine calls dhcs_ix_scan_open to open an index for scanning. In response,
the storage manager makes sure the index is open and supplies a scan handle that the
SQL engine passes to subsequent index scan routines.

The tableid and indexid arguments taken in combination identify the particular index
to be opened. The SQL engine obtains indexid and tableid from the SYSINDEXES
catalog table.

Although the SQL engine presumes that the index specified by indexid is open after
calling dhcs_tpl_scan_open, the storage manager should not automatically open files
or load data structures each time the SQL engine calls this function. This is because
previous SQL statements may have resulted in calls to functions that already opened
the index. Instead, the storage manager should use whatever file-caching mechanism
exists in the underlying storage system to check if the index is already open, and open
it only if necessary.

5.3.10 dhcs_ix_get_sel
Returns an estimate of the selectivity of the index given a set of field values and an
operator.

Syntax
extern dhcs_status_t

dhcs_ix_get_sel (

 void *ixhdl,

 dhcs_fldl_val_t *index_values,

 dhcs_ix_oper_t oper,

 dhcs_double_t *sel,

 void *conn_hdl

) ;
5-40 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
Returns
dhcs_status_t

Arguments
IN ixhdl
A handle for the index, as returned by dhcs_ix_open.

IN index_valuesl
The values to be used for comparison.

IN oper
Operator to be used for index_value match. The operator will be one from the list of
operators returned by the storage manager in response to the
IX_PUSH_DOWN_RESTRICTS info type argument of dhcs_rss_get_info. In this
context, however, the SQL engine does not pass operators IXOP_FIRST or
IXOP_LAST.

OUT sel
An estimate of the selectivity of the index based on the comparison. Must be a value
between zero (0) and one (1.0). The selectivity value indicates for what percentage of
the table the comparison is TRUE. sel is represented as a fraction amount. For
example, a sel value of .6 indicates that the comparison was TRUE for 60% of the
table.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
dhcs_ix_get_sel is used to get an estimate of the selectivity for an index based on the
operator and comparison values stored in index_values. The operator describes the
type of comparison being performed on the columns and index_values contains a list
of comparison values. For each field-value item, use the structure dhcs_fv_item_t to
extract the component id, the associated table-field id, and the dhcs_data_t object
from the field item. The field items are ordered within index_values by their
component id. Note that index_values will not necessarily contain a value for each
component of the index. sel should be set to indicate the percentage of records for
which the comparison was TRUE when the index record was compared to the
comparison values based on the operator. Note that sel is only an estimate of the
selectivity. To what extent a storage manager goes to determine the actual selectivity

STATUS_OK Successful completion.

SQL_ERR_NOTYET Indicates that the selectivity information could not be
generated.
Dharma Systems Inc 5-41

User Guide
is implementation defined. There is no requirement that a storage manager actually
scan the index to determine the actual selectivity. Some other mechanism such as
heuristics or statistics-gathering mechanism may be used. For example, a possible
heuristic would be to give a higher selectivity estimate when index_values contains
only one value, and to lower that estimate as the number of values in index_values
increases. Returning a status of SQL_ERR_NOTYET indicates that a selectivity
value is not available. In this case, the SQL engine will use default values of
selectivity based on the operator.

Index Operator Notes
The operator argument describes the type of index scan to perform by indicating the
comparison criteria for selecting records from the index.

Implementations indicate support for various comparison operators by including them
in the array of values they return in response to the
DHCS_IX_PUSH_DOWN_RESTRICTS info type argument of dhcs_rss_get_info.

Implementations must at least support the DHCS_IXOP_FIRST operator. If the stor-
age manager does not support a particular operator, the SQL engine processes such
predicates internally (or, for DHCS_IXOP_CONTAINS and
DHCS_IXOP_NOTCNTNS, generates an error). If the storage manager indicates it
does not support processing of any but the DHCS_IXOP_FIRST index operator, the
SQL engine requests that the storage manager return all records by passing the
DHCS_IXOP_FIRST operator.

The SQL engine "pushes-down" processing of supported predicates to the storage
manager. The objective of pushing down such index predicates is to reduce the over-
all cost of executing an SQL statement by allowing the SQL engine optimizer to con-
sider options not otherwise available.

For operator values that supply comparison values, index_search_vals contains the
values to be compared as well as their field ids and data types. Note that the values of
operator and index_search_vals the SQL engine provides in dhcs_ix_scan_open are
also provided on each call to dhcs_ix_scan_fetch. It is up to the storage manager to
decide whether to process the operator value during execution of dhcs_ix_scan_open
or dhcs_ix_scan_fetch.

The following discussion gives some more detail on the individual operators.

DHCS_IXOP_EQ, DHCS_IXOP_GT, DHCS_IXOP_GE, DHCS_IXOP_LE,
DHCS_IXOP_LT, and DHCS_IXOP_NE

For these operators, the number of comparison values provided will be from one (1)
up to the number of components in the index. All index records whose components
values match the comparison values according to the operator that is provided should
be returned via ix_scan_fetch.

DHCS_IXOP_BET, DHCS_IXOP_BET_IE, DHCS_IXOP_BET_EI,
DHCS_IXOP_BET_EE, and DHCS_IXOP_NOTBET
5-42 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
For these operators, there are two comparison values for each index component. Each
pair of comparison values indicates the upper and lower bounds of a range. So, the
number of comparison values the SQL engine supplies in index_search_vals is twice
the value passed in the num_field_values input argument.

When the SQL engine calls dhcs_ix_scan_fetch with one of the range operators, the
storage manager should return all index records whose components meet the criteria
detailed in the following table:

DHCS_IXOP_FIRST and DHCS_IXOP_LAST
For operators DHCS_IXOP_FIRST and DHCS_IXOP_LAST, there are no compari-
son values:

• DHCS_IXOP_FIRST indicates that the index scan will start with the first record
of the index. The storage system should iterate through all other records on suc-
cessive calls to dhcs_ix_scan_fetch.

• DHCS_IXOP_LAST indicates that the index scan need only return the last record
in the index. The storage system will not need to iterate through the index back-
wards.

Note that which record is first or last is dependent on the sort order of the fields within
the index. See dhcs_ix_insert (section 5.3.5) for a more detailed description of how
records are ordered within an index.

DHCS_IXOP_IN
For the DHCS_IXOP_IN operator, there is a set of comparison values for each index
component. The storage manager must determine how many comparison values there
are for each index component by examining the index_search_vals argument.

Table 5-3: BETWEEN Range Operators

Operator Returns

DHCS_IXOP_BET Records whose components are greater than or equal
to the lower bound of the range, and less than or equal
to the upper bound of the range.

DHCS_IXOP_BET_IE Records whose components are greater than or equal
to the lower bound of the range, and less than the upper
bound of the range.

DHCS_IXOP_BET_EI Records whose components are greater than the lower
bound of the range, and less than or equal to the upper
bound of the range.

DHCS_IXOP_BET_EE Records whose components are greater than the lower
bound of the range, and less than the upper bound of
the range.

DHCS_IXOP_NOTBET Records whose components are less than the lower
bound of the range, and greater than the upper bound of
the range.
Dharma Systems Inc 5-43

User Guide
With DHCS_IXOP_IN, the storage manager should return all index records whose
components have values in the cross-product of the sets of comparison values, as
shown in the following table:

If a storage manager does not support DHCS_IXOP_IN (as indicated in the storage
manager response to dhcs_rss_get_info), the SQL engine checks whether the storage
manager supports DHCS_IXOP_EQ. If it does, the SQL engine translates an IN pred-
icate to a series of calls to dhcs_ix_scan_open using DHCS_IXOP_EQ. If it does not,
the SQL engine processes the predicate internally.

DHCS_IXOP_NOTIN
The DHCS_IXOP_NOTIN operator is similar to DHCS_IXOP_IN, with the follow-
ing differences:

• With DHCS_IXOP_NOTIN, the storage manager should return all index records
whose components do not have values in the cross product of the sets of compari-
son values.

• If a storage manager does not support DHCS_IXOP_NOTIN (as indicated in the
storage manager response to dhcs_rss_get_info), the SQL engine processes the
predicate internally, without first checking for support of DHCS_IXOP_NE.

DHCS_IXOP_CONTAINS and DHCS_IXOP_NOTCNTNS
The semantics of the these operators are defined by the storage manager, and indicates
support for the SQL CONTAINS predicate. The SQL CONTAINS predicate is an
extension that allows storage managers to provide implementation-defined search
capabilities on character and binary data. The SQL syntax for a CONTAINS predicate
is

column_name [NOT] CONTAINS 'string'
The SQL engine restricts the data type of column_name to CHARACTER, VAR-
CHAR, LONG VARCHAR, BINARY, VARBINARY, or LONG VARBINARY. The
format of the quoted string argument and the semantics of the CONTAINS predicate is
determined by the storage manager. The following example shows one possible for-
mat for a CONTAINS predicate:

WHERE C1 CONTAINS 'ODBC , ORACLE +100'

With this format, the +100 syntax might indicate that the two search keywords must
occur within 100 lines (or words, or pages) of each other.

Table 5-4: Rows Returned for DHCS_IXOP_IN

Component 1
comparison
values

Component 2
comparison
values

Component 3
comparison values

Rows Returned

a, b 1, 2 x, y a 1 x
a 1 y
a 2 x
a 2 y
b 1 x
b 1 y
b 2 x
b 2 y
5-44 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
The CONTAINS predicate is the only predicate that can operate on data in LONG
data-type columns. The arbitrary size and unstructured format of data in such col-
umns require special consideration. Note the following:

• Unlike the other comparison operators, the SQL engine will not process the
DHCS_IXOP_CONTAINS and DHCS_IXOP_NOTCNTNS operators internally
if the storage manager does not support them. Instead, the SQL engine generates
an error when it encounters an SQL CONTAINS predicate.

• Indexes which support DHCS_IXOP_CONTAINS or
DHCS_IXOP_NOTCNTNS can not support any other operators. The SQL
engine generates an error if an index type which supports either
DHCS_IXOP_CONTAINS or DHCS_IXOP_NOTCNTNS also supports other
operators.

• Indexes which support DHCS_IXOP_CONTAINS and
DHCS_IXOP_NOTCNTNS will perform better if they also support the
DHCS_IX_TID_SORTED property.

• For LONG data-type columns, the SQL engine passes search values as a pointer
to a character or binary string, not a field handle. The data type id of the character
string is DHCS_LVC or DHCS_LVB. This is the only case where the SQL engine
sets the data type id to a long type, but passes a value instead of a field handle to
the dhcs_data_t component of a field value list.

For DHCS_IXOP_CONTAINS and DHCS_IXOP_NOTCNTNS, the number of com-
parison values provided will be from one (1) up to the number of components in the
index.

5.4 STORAGE SYSTEM DEFINED FUNCTIONS AND PROCEDURES

5.4.1 dhcs_get_procinfo
Returns information about storage system defined scalar functions and procedures.

Syntax
extern dhcs_status_t

dhcs_get_procinfo (

 dhcs_procinfo_t **proc_info,

 void *conn_hdl,

) ;

Returns
dhcs_status_t

STATUS_OK. Successful completion.

SQL_ERR_NOTYET If storage system scalar functions and procedures are
not supported
Dharma Systems Inc 5-45

User Guide
The dhcs_procinfo_t structure definition and field descriptions are as follows:

typedef struct {

 dhcs_char_t *proc_name ;

 dh_boolean proc_is_constant ;

 dhcs_integer_t proc_min_paramcount ;

 dhcs_param_desc_t *proc_param_info ;

 dhcs_value_desc_t *proc_result_info ;

 dhcs_value_desc_t *proc_retval_info ;

 proc_execfnptr exec_fnptr ;

 proc_fetchfnptr fetch_fnptr ;

 proc_closefnptr close_fnptr ;

} dhcs_procinfo_t;

proc_name Name of the procedure or scalar function as exposed to
SQL statements

proc_is_constant Reserved for future use. Should be set to FALSE currently

proc_min_paramcount If the function/procedure can be called with variable num-
ber of arguments, then this indicates the minimum number
of arguments with which this function/procedure can be
called.

proc_param_info Pointer to an array of structures of type
dhcs_param_desc_t. This is used to describe the argu-
ments of the function/procedure. Each element of the
array describes one argument. The order of the elements
in the array is the same as the order of arguments in the
function. i.e., The first element of the array describes the
first argument, and so on. To mark the end of the array a
null pointer should be included after the last valid entry.

proc_result_info Pointer to an array of structures of type
dhcs_value_desc_t. This is relevant only for procedures.
This is used to describe the columns of the result set.
Each element of the array describes a column. The order
of the elements in the array is the same as the order of
columns in the resultset. i.e., The first element of the array
describes the first column, and so on. To mark the end of
the array a null pointer should be included after the last
valid entry.
Set proc_result_info to NULL for functions and for proce-
dures that do not return a resultset.

Note: This field is used to differentiate between a function
and a procedure. If this is set to NULL then it is reckoned
to be a procedure, otherwise it is taken to be a function.

proc_retval_info Pointer to a structure of type dhcs_value_desc_t. This is
relevant only in the case of functions. This is used to
describe the return value of a function. This is to be set to
NULL in case of procedures.
5-46 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
 The prototype of proc_execfnptr is as follows:

typedef dhcs_status_t (*proc_execfnptr) (

 void *conn_hdl,

 void **cur_proc_hdl,

 dhcs_proc_id_t proc_id,

 dhcs_op_t proc_op,

 dhcs_data_t *proc_args[],

 dhcs_data_t *proc_resultset[],

 dhcs_data_t *proc_retval

);

 The prototype of proc_fetchfnptr is as follows:

typedef dhcs_status_t (*proc_fetchfnptr) (

 void *conn_hdl,

 void **cur_proc_hdl,

 dhcs_proc_id_t proc_id,

exec_fnptr Pointer to the function that implements the functionality of
the scalar function. The stub implementer is expected to
code a 'C' function as per the prototype of the function
pointer and assign its pointer to this data member. This 'C'
function is executed when the SQL statement containing
references to the scalar function is executed. The function
is executed once for each row the SQL statement is
expected to return. In the case of procedures, the function
pointed to by this data member is expected to perform the
actual execution of the procedure. The execute function is
expected to fill in the values of the OUT and INOUT
parameters. For procedures that have a result set, the
function should set up required internal data structures for
returning rows of the resultset which will be retrieved by
calls to fetch_fnptr.

fetch_fnptr Pointer to the function that returns a row from a proce-
dure's resultset. The stub implementer is expected to code
a 'C' function as per the prototype of the function pointer
and assign its pointer to the data member. This is relevant
only for procedures that return a resultset. This function is
called by the SQL Engine for procedures that have a
resultset after a call to exec_fnptr. This function is called
repeatedly until the function returns a status of
SQL_NOT_FOUND indicating that there are no more rows
in the resultset.

close_fnptr Pointer to the function that closes a procedure's resultset.
The stub implementer is expected to code a 'C' function as
per the prototype of the function pointer and assign its
pointer to the data member. This pointer is relevant only
for procedures that return a resultset.
Dharma Systems Inc 5-47

User Guide
 dhcs_op_t proc_op,

 dhcs_data_t *proc_args[],

 dhcs_data_t *proc_resultset[],

 dhcs_data_t *proc_retval

);

 The prototype of proc_closefnptr is as follows:

typedef dhcs_status_t (*proc_closefnptr) (

 void *conn_hdl,

 void **cur_proc_hdl,

 dhcs_proc_id_t proc_id,

 dhcs_op_t proc_op,

 dhcs_data_t *proc_args[],

 dhcs_data_t *proc_resultset[],

 dhcs_data_t *proc_retval

);

The arguments of the above functions are as follows:

conn_hdl
IN

An implementation-specific handle that identifies the user
connection. The SQL engine supplies the same value
here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant
only in the Dharma SDK Desktop configuration, where
storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

current_proc_hdl
IN/OUT

An implementation-specific handle that identifies the cur-
rent procedure being executed. This is an OUT argument
in the case of proc_execfnptr and an IN argument in the
case of proc_fecthfnptr and proc_closefnptr. This is rele-
vant only for procedures. The procedure handle returned
by the proc_execfnptr function is passed to the
proc_fetchfnptr and proc_closefnptr functions.

proc_id
IN

Procedure or function identifier. This is the index of the
procedure/function in the array returned by the
dhcs_get_procinfo stub function.

proc_op
IN

Operation to be performed. Valid values are:
DHCS_EXECUTE
DHCS_FETCH
DHCS_CLOSE
5-48 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
Note: The arguments of the three functions, proc_execfnptr, proc_fetchfnptr and
proc_closefnptr are all the same. Hence the stub implementer is at liberty to either
write separate execute, fetch and close functions for each of the functions/procedures
or have a single common function that will handle all the operations of all the func-
tions/procedures. In the latter case, the proc_id can be used to identify the function/
procedure and the proc_op to identify the operation that is to be carried out.

The dhcs_param_desc_t structure definition and field descriptions are as follows:

typedef struct {

 dhcs_param_inout_t param_inout_type ;
 dhcs_typeid_t param_typeid ;

 dh_boolean param_is_null ;

 dhcs_integer_t param_width ;

 dhcs_smallint_t param_scale ;

 dhcs_char_t * param_name ;

} dhcs_param_desc_t;

proc_args
IN

Pointer to an array of dhcs_data_t structures. This array
contains the arguments being passed to the storage sys-
tem function/procedure. Each element of the array corre-
sponds to an argument. The first element of the array
corresponds to the first argument and so on. This is rele-
vant only for proc_execfnptr.

proc_resultset
OUT

Pointer to an array of dhcs_data_t structures. This is rele-
vant only for procedures and needs to be set only in the
case of proc_fetchfnptr.

proc_retval
OUT

Pointer to a dhcs_data_t structure. This is relevant only for
functions and needs to be set only in the case of
proc_execfnptr.

param_inout_type Type of the parameter.
States whether the parameter is of INPUT, OUTPUT or
INPUT/OUTPUT type.
For scalar functions the only valid type is
DHCS_PARAM_IN, since only input parameters are sup-
ported.
For procedures the valid values are -
DHCS_PARAM_IN,
DHCS_PARAM_OUT and
DHCS_PARAM_INOUT.

param_typeid Data type of the parameter.
Example DHCS_CHAR, DHCS_INTEGER, etc.

param_is_null Whether the parameter is NULL.

param_width Specifies the maximum number of digits for numeric types
or maximum number of characters for character types.
Dharma Systems Inc 5-49

User Guide
The dhcs_value_desc_t structure definition and field descriptions are as follows:

typedef struct {

 dhcs_typeid_t value_typeid ;
 dh_boolean value_is_null ;

 dhcs_integer_t value_width ;

 dhcs_smallint_t value_scale ;

 dhcs_char_t * col_name ;

} dhcs_value_desc_t;

Arguments
IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

OUT proc_info
Pointer to an array of dhcs_procinfo_t structures. Each element of the array describes
a storage system defined scalar Function or Procedure.

Description
The dhcs_get_procinfo returns a pointer to an array of dhcs_procinfo_t structures.
Each element of the array describes a storage system defined scalar Function or
Procedure. To mark the end of the array a null pointer should be included after the last
valid entry. Note that the array contains information about both functions and
procedures. Functions are differentiated from procedures by the fact that
proc_retval_info is set to NULL in the case of procedures and in the case of functons

param_scale Specifies the number of digits to the right of the decimal
point for numeric types.

param_name Name of the parameter.

value_typeid Data type of the value.
Example DHCS_CHAR, DHCS_INTERGER, etc.

value_is_null Whether the value is NULL.

value_width Specifies the maximum number of digits for numeric types
or maximum number of characters for character types.

value_scale Specifies the number of digits to the right of the decimal
point for numeric types.

col_name In the case of proc_result_info this is the name of the col-
umn of the resultset. Can be ignored for proc_retval_info.
5-50 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
it is a non-null value. If storage system Functions and Procedures are not supported,
dhcs_get_procinfo should return SQL_ERR_NOTYET.
Dharma Systems Inc 5-51

User Guide
5.5 LONG DATA TYPES INTERFACES

5.5.1 dhcs_get_data
Retrieves a segment of a long field value.

Syntax
extern dhcs_status_t

dhcs_get_data(

 dhcs_fld_hdl * fld_hdl,

 char * buf,

 long buf_len,

 long * len,

 long offset,

 dh_boolean * is_null,

 void *conn_hdl

);

Returns
dhcs_status_t

Arguments
IN fld_hdl
The field handle for the long data-type field to be retrieved. Previous calls to the
dhcs_tpl_scan_fetch, dhcs_tpl_fetch, or dhcs_ix_scan_fetch routines generate the field
handles passed to dhcs_get_data. The field handle includes details on where the long
data resides (such as a pointer to a file or disk location). However, specifics about the
contents and structure of a field handle are defined by the storage manager.

OUT buf
The field segment retrieved.

IN buf_len
Buffer length for buf. buf_len specifies the maximum amount of data that can be
retrieved in this call to dhcs_get_data.

OUT len
Length in bytes of data in the field, starting at offset. The total length of the data in the
field is the sum of len plus offset.

IN offset
An offset, in bytes, that indicates where to start retrieval of the field segment. The
total length of the data in the field is the sum of len plus offset.

OUT is_null
A flag indicating whether the field is null.

STATUS_OK Successful completion.
5-52 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
The function dhcs_get_data retrieves a segment of a long field value. The SQL
engine uses it to retrieve character, binary, or storage-system-specific data in columns
defined as LONG VARCHAR or LONG VARBINARY.

ODBC applications that retrieve long field values specify the maximum size of data
they can accept in a single call. The SQL engine passes this value to dhcs_get_data as
buf_len. If the data in the long field is greater than buf_len, the SQL engine will call
dhcs_get_data multiple times to retrieve the entire field value.

The storage manager retrieves data from the field starting at offset. The SQL engine
initially sets offset to zero. On subsequent calls to dhcs_get_data, it increments offset:

• For LONG VARBINARY data, the SQL engine simply increments offset by
buf_len.

• For LONG VARCHAR data, the storage manager must return the segment as a
null-terminated string. The SQL engine takes this into account and increments
offset by buf_len -1.

The storage manager indicates the length of data in the field through the len argument.
It subtracts the value of offset from the total length of the data in the field and returns
the resulting value in len. Thus, the sum of offset plus len is always the total length of
the data in the field.

When the storage manager sets len to a value less than the buf_len, it signals that the
current field segment is the last one. The SQL engine calls dhcs_get_data until the
storage manager sets len to a value less than buf_len.

For instance, consider a long data value that is a total of 90 bytes long. Table 5–5
shows values for the various arguments to dhcs_get_data over a series of calls to
retrieve the entire field for a 20-byte buffer length.

Table 5-5: Argument Values to dhcs_get_data Over a Series of Calls

 Binary Character

buf_len offset len offset len

Call 1 20 0 90 0 90

Call 2 20 20 70 19 71

Call 3 20 40 50 38 52

Call 4 20 60 30 57 33

Call 5 20 80 10 76 14
Dharma Systems Inc 5-53

User Guide
5.5.2 dhcs_put_data
Stores a segment of a long field value.

Syntax
extern dhcs_status_t

dhcs_put_data(

 dhcs_fld_hdl * fld_hdl,

 char * buf,

 long buf_len,

 long offset,

 dh_boolean * is_null,

 void *conn_hdl

);

Returns
dhcs_status_t

Arguments
IN fld_hdl
The field handle for the long data-type field to be stored. A previous call to the
dhcs_tpl_insert routine generated the field handle passed to dhcs_put_data. The field
handle includes details on where to store the data (such as a pointer to a file or disk
location). However, specifics about the contents and structure of a field handle are
defined by the storage manager.

IN buf
The segment to be stored in the long field.

IN buf_len
Buffer length for buf. buf_len specifies the amount of data to be stored in this call to
dhcs_put_data.

IN offset
An offset, in bytes, that indicates where to start storage of the field segment.

IN is_null
A flag indicating whether the field is null.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections.

STATUS_OK Successful completion.
5-54 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
Description
The function dhcs_put_data stores a segment of a long field value. The SQL engine
uses it to store character, binary, or storage-system-specific data in columns defined as
LONG VARCHAR or LONG VARBINARY.

ODBC applications that store long field values specify the maximum size of data they
will pass in a single call. The SQL engine passes this value to dhcs_put_data as
buf_len. The ODBC application specifies the offset at which to store the data, which
is passed to dhcs_put_data as the offset argument. The ODBC application may store
the data in multiple segments, in which case there will be multiple calls to
dhcs_put_data.

5.5.3 dhcs_put_hdl
Copies data from one long-field handle to another.

Syntax
extern dhcs_status_t

dhcs_put_hdl(

 dhcs_fld_hdl * dest_hdl,

 dhcs_fld_hdl * src_hdl,

 void *conn_hdl

);

Returns
dhcs_status_t

Arguments
IN dest_hdl
The destination field handle to copy data to.

IN src_hdl
The source field handle to retrieve data from.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
The function dhcs_put_hdl provides a shortcut for the SQL engine to process SQL
INSERT statements that copy data in columns defined as LONG VARCHAR or
LONG VARBINARY.

STATUS_OK Successful completion.
Dharma Systems Inc 5-55

User Guide
The SQL engine calls dhcs_put_hdl when it encounters an INSERT statement such as
the following.

INSERT INTO T1 (C1) SELECT C2 FROM T2;

If C1 and C2 contain long data, the SQL engine calls dhcs_put_hdl instead of iterating
through calls to dhcs_get_data and dhcs_put_data. To process such a case, the SQL
engine makes the following calls:

• dhcs_tpl_scan_fetch, dhcs_tpl_fetch, or dhcs_ix_scan_fetch, which return the
field handle the SQL engine passes as the src_hdl argument to dhcs_put_hdl. This
field handle includes details on where the long data resides (such as a pointer to a
file or disk location).

• dhcs_tpl_insert, which returns the field handle the SQL engine passes as the
dest_hdl argument to dhcs_put_hdl. This field handle includes details on where to
store the data.

• dhcs_put_hdl with arguments derived from the preceding calls.

The storage manager takes whatever steps are necessary to copy the data.
5-56 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
5.6 DYNAMIC METADATA INTERFACES

5.6.1 dhcs_get_colinfo
Retrieves detail on a table column from the storage manager. The SQL engine calls
this routine only when storage managers indicate they support dynamic metadata (see
section 5.6).

Syntax
extern dhcs_status_t

dhcs_get_colinfo (

 char *table_name,

 char *owner_name,

 dhcs_tableid_t table_id,

 dhcs_colinfo_t **info,

 long * no_cols,

 void *conn_hdl

);

Returns
dhcs_status_t

Arguments
IN table_name
A null-terminated character string that contains the table name for which the imple-
mentation should return column information. This value will be one of the values that
the implementation supplied in the info.table_name output argument in response to a
call to dhcs_get_tblinfo.

IN owner_name
A null-terminated character string that contains the owner of the table for which the
implementation should return column information. This value will be one of the val-
ues that the implementation supplied in the info.owner_name output argument in
response to a call to dhcs_get_tblinfo.

IN table_id
The identifier of the table for which the implementation should return column infor-
mation. This value will be one of the values that the implementation supplied in the
info.id output argument in response to a call to dhcs_get_tblinfo.

OUT info
An array of structures of type dhcs_colinfo_t. The SQL engine allocates and passes an
array of 500 structures. The implementation supplies details for a single column in an
element of the array.

The dhcs_colinfo_t structure definition and field descriptions are as follows:

STATUS_OK Successful completion.
Dharma Systems Inc 5-57

User Guide
typedef struct {

 dhcs_fld_desc_t fld_info ;

 dhcs_dflt_type_t dflt_type ;

 char dflt_value[DHCS_MAX_DFLT_LEN_P1] ;

} dhcs_colinfo_t ;

OUT no_cols
The number of columns in the table. This value indicates how many elements in the
info array will be filled in.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

fld_info A structure of type dhcs_desc_t in which the implementation returns details of
the column’s definition. See page 5-2 for details of the dhcs_desc_t structure.

dflt_type An enumerated type that represents different possible default values for the
column. (A default value is the value that SQL stores in a column if an update
operation for a row does not specify a value for the column.) Implementations
either leave this field empty (in which case, the SQL engine uses a default
value of NULL), or supply one of the following values:

DHCS_DFLT_LITERAL: An integer, numeric or string constant. If dflt_type
specifies DHCS_DFLT_LITERAL, the implementation should specify the string
value in the dflt_value field of info.

DHCS_DFLT_USER: The name of the user issuing the INSERT or UPDATE
statement on the table. Valid only for columns defined with character data
types.

DHCS_DFLT_NULL: A null value.

DHCS_DFLT_UID: The user id of the user executing the INSERT or UPDATE
statement on the table.

DHCS_DFLT_SYSDATE: The current date. Valid only for columns defined
with DATE data types.

DHCS_DFLT_SYSTIME: The current time. Valid only for columns defined
with TIME data types.

DHCS_DFLT_SYSTIMESTAMP: The current date and time. Valid only for col-
umns defined with TIMESTAMP data types.

dflt_value A null-terminated character string that contains a literal default value. Only
applicable if dflt_type is set to DHCS_DFLT_LITERAL. The maximum length
of the character string is 255 characters.
5-58 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
Description
If a storage manager indicates it supports dynamic metadata, the SQL engine relies on
the storage manager to provide details on the structure of tables and indexes, instead
of storing those details in the static system catalog.

The SQL engine uses the information supplied through calls to dhcs_get_colinfo to
load a memory-resident version of the syscolumns system catalog table. The SQL
engine calls dhcs_get_colinfo when an SQL statement first accesses a particular table.

When it calls dhcs_get_colinfo, the SQL engine supplies input arguments that identify
the table of interest. The combination of the table_name and owner_name arguments
uniquely identifies a table in the storage system. Implementations can use that combi-
nation or the table_id argument to identify the table, whichever is more convenient. In
response, the storage manager supplies details on the columns in the table in the info
argument, up to the maximum of 500 columns in a table.

5.6.2 dhcs_get_idxinfo
Retrieves detail on an index from the proprietary storage system. The SQL engine
calls this routine only when storage managers indicate they support dynamic metadata
(see section 5.6).

Syntax
extern dhcs_status_t

dhcs_get_idxinfo (

 char *table_name,

 char *owner_name,

 dhcs_tableid_t table_id,

 dhcs_idxinfo_t *info,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN table_name
A null-terminated character string that contains the table name for which the imple-
mentation should return index information. This value will be one of the values that
the implementation supplied in the info.table_name output argument in response to a
call to dhcs_get_tblinfo.

STATUS_OK Successful completion.

SQL_NOT_FOUND After returning details on the last index for the table.
Dharma Systems Inc 5-59

User Guide
IN owner_name
A null-terminated character string that contains the owner of the table for which the
implementation should return index information. This value will be one of the values
that the implementation supplied in the info.owner_name output argument in response
to a call to dhcs_get_tblinfo.

IN table_id
The identifier of the table for which the implementation should return index informa-
tion. This value will be one of the values that the implementation supplied in the
info.id output argument in response to a call to dhcs_get_tblinfo.

OUT info
A structure of type dhcs_idxinfo_t. When the SQL engine calls dhcs_get_idxinfo, the
structure is empty. Implementations fill in the fields of the structure with details about
the index. The dhcs_idxinfo_t structure definition and field descriptions are as fol-
lows:

typedef struct {

 dhcs_indexid_t id;

 char index_name[DHCS_MAX_IDLEN_P1];

 char index_owner[DHCS_MAX_IDLEN_P1];

 dh_boolean unique;

 char ix_type;

 int no_cols;

 dhcs_idxkey_info_t idxkey_info[DHCS_MAX_IDXFIELDS] ;

} dhcs_idxinfo_t;

id A long integer identifier assigned by the storage system that uniquely iden-
tifies the index. The SQL engine passes id on subsequent calls to identify
the index. The SQL engine reserves index identifiers below 1000 and
above 32767. Implementations must generate index identifiers within
those values. Implementations must keep track of index identifiers and
their corresponding index names. The SQL engine passes only the identi-
fier, not the name, in subsequent calls. It is the implementation's responsi-
bility to associate the identifier with the correct index.

index_name A null-terminated character string that contains the index name.

index_owner A null-terminated character string that contains the owner of the index.

unique A flag that indicates whether records in the index must be unique. If
TRUE, the index is unique. If FALSE, then the index allows duplicate
records.

ix_type A single-character flag that indicates the type of index. The ix_type argu-
ment does not imply any particular indexing technique, but is an arbitrary
flag that allows the storage manager to indicate differing support for multi-
ple types of indexes. See the discussion of the ix_type argument of
dhcs_create_index on page 5-24 for details.

no_cols The number of index-key columns in the index. This value indicates how
many elements in the idxkey_info array will be filled in.
5-60 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
If a storage manager indicates it supports dynamic metadata, the SQL engine relies on
the storage manager to provide details on the structure of tables and indexes, instead
of storing those details in the static system catalog.

The SQL engine uses the information supplied through calls to dhcs_get_idxinfo to
load a memory-resident version of the sysindexes system catalog table. The SQL
engine calls dhcs_get_idxinfo when an SQL statement first accesses a particular table.

The SQL engine loops through calls to dhcs_get_idxinfo for each index defined on the
table, and the storage manager supplies index details in the info argument. The stor-
age manager indicates there are no more indexes for the table by returning
SQL_NOT_FOUND.

When it calls dhcs_get_idxinfo, the SQL engine supplies input arguments that identify
the table of interest. The combination of the table_name and owner_name arguments
uniquely identifies a table in the storage system. Implementations can use that combi-
nation or the table_id argument to identify the table, whichever is more convenient.

5.6.3 dhcs_get_metainfo
Retrieves summary information about tables in the proprietary storage system. The
SQL engine calls this routine only when storage managers indicate they support
dynamic metadata (see section 5.6).

idxkey_info An array of structures of type dhcs_idxkey_info_t. The SQL engine allo-
cates and passes an array with DHCS_MAX_IDXFIELDS number of struc-
tures. The implementation supplies details for a single index key in an
element of the array. The storage manager must supply information on
the index keys in the same order as they exist in the proprietary storage
system.

The dhcs_idxkey_info_t structure definition and field descriptions are as
follows:

typedef struct {
char sort_order ;
char col_name[DHCS_MAX_IDLEN_P1];
} dhcs_idxkey_info_t;

sort_order
A character that indicates the sort order for the index key. A value of A
indicates ascending and a value of D indicates descending
order.col_name
The index key column name, supplied as null terminated character string.
Dharma Systems Inc 5-61

User Guide
Syntax
extern dhcs_status_t

dhcs_get_metainfo (

 unsigned long *num_tbl,

 dh_boolean *tbl_sorted,

 void *conn_hdl

);

Returns
dhcs_status_t

Arguments
INOUT num_tbl
The number of tables in the storage system for which subsequent calls to
dhcs_get_tblinfo will return detail. This is the number of tables to which the user cur-
rently connected has access. The SQL engine initializes num_tbl to a default value
and uses this default value if the storage manager does not change it in response to
dhcs_get_metainfo.

OUT tbl_sorted
A Boolean value that indicates whether the implementation supplies responses to the
SQL engine’s calls to dhcs_get_tblinfo sorted by table name. A value of TRUE
means the responses are sorted by table name.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
If a storage manager indicates it supports dynamic metadata, the SQL engine relies on
the storage manager to provide details on the structure of tables and indexes, instead
of storing those details in the static system catalog.

The SQL engine calls dhcs_get_metainfo when a user connects to the database, before
it calls other dynamic metadata routines. In response, the storage manager supplies
information that the SQL engine can use to improve performance of the other rou-
tines:

• The num_tbl argument specifies the number of tables for which subsequent calls
to dhcs_get_tblinfo will return detail. The SQL engine uses this information to
allocate memory for the memory-resident version of the systables system catalog
table.

STATUS_OK Successful completion.
5-62 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
• If a storage manager does not supply a value for num_tbl, the SQL engine allo-
cates memory for a default number of tables. If necessary, the SQL engine
dynamically extends this default allocation during its calls to dhcs_get_tblinfo.
This dynamic allocation slows performance of those calls, however.

• The tbl_sorted argument indicates whether the SQL engine must sort the storage
manager’s responses to dhcs_get_tblinfo before loading a memory-resident index
for the systables system catalog table. The key for that index is the table name. If
storage managers indicate that responses are sorted by table name, it loads the
index without sorting, which improves overall performance of dynamic metadata
loading.

Implementation of dhcs_get_metainfo is optional. If storage managers do not imple-
ment it, the SQL engine uses a default value for the number of tables, and assumes
that responses to dhcs_get_tblinfo are not sorted.

5.6.4 dhcs_get_tblinfo
Retrieves detail on a table from the proprietary storage system. The SQL engine calls
this routine only when storage managers indicate they support dynamic metadata (see
section 5.6).

Syntax
extern dhcs_status_t

dhcs_get_tblinfo (

 dhcs_tblinfo_t*info,

 void*conn_hdl

) ;

Returns
dhcs_status_t

Arguments
OUT info
A structure of type dhcs_tblinfo_t. When the SQL engine calls dhcs_get_tblinfo, the
structure is empty. Implementations fill in the fields of the structure with details about
the table. The dhcs_tblinfo_t structure definition and field descriptions are as follows:

typedef struct {

 dhcs_tableid_t id;

 char table_name[DHCS_MAX_IDLEN_P1];

 char table_owner[DHCS_MAX_IDLEN_P1];

 dh_boolean read_only;

STATUS_OK Successful completion

SQL_NOT_FOUND After returning details on the last table in the storage
system that is accessible by the currently-connected
user.
Dharma Systems Inc 5-63

User Guide
 dh_boolean ispublic;

} dhcs_tblinfo_t;

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
If a storage manager indicates it supports dynamic metadata, the SQL engine relies on
the storage manager to provide details on the structure of tables and indexes, instead
of storing those details in the static system catalog.

The SQL engine uses the information supplied through calls to dhcs_get_tblinfo to
load a memory-resident version of the systables system catalog table.

The SQL engine calls dhcs_get_tblinfo when a user connects to the database. The
SQL engine loops through calls to dhcs_get_tblinfo for each table in the database, and
the storage manager supplies table details in the info argument. The storage manager
indicates there are no more tables for which to supply detail by returning
SQL_NOT_FOUND.

It is the responsibility of the implementation to determine which table are accessible
by the user connected to the storage system, and to return metadata for those tables
only.

The metadata for each table that the SQL engine retrieves through dhcs_get_tblinfo
does not include detail on individual columns of the table. The SQL engine retrieves
details on the columns later, through a call to dhcs_get_colinfo, if and when an SQL
statement first refers to the table.

id A long integer identifier assigned by the storage system that uniquely identi-
fies the table. The SQL engine passes id on subsequent calls to identify the
index. The SQL engine reserves table identifiers below 1000 and above
32767. Implementations must generate table identifiers within those values.
Implementations must keep track of table identifiers and their corresponding
table names. The SQL engine passes only the identifier, not the name, in
subsequent calls. It is the implementation's responsibility to associate the
identifier with the correct table.

table_name A null-terminated character string that contains the table name.

table_owner A null-terminated character string that contains the owner of the table.

read_only A Boolean value that indicates whether the user connected to the database
has read-only access to the table. A value of TRUE means the user has
read-only access. If read_only is set to TRUE, the SQL engine will not allow
the user to issue INSERT, UPDATE, and DELETE statements on the table.

ispublic A Boolean value that indicates whether the table should be considered a
Public table. See the discussion of Public tables in the Description section
below
5-64 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
Public tables
According to the SQL standard, qualifying a database object with an owner name allows
objects that are not owned by the current user to be referenced. Any unqualified reference
to a table in a SQL statement always translates to a table owned by the current user. It is
sometimes desirable to be able to refer to tables owned by other users without having to
qualify them with the owner name. In the case of systems where the metadata is not
dynamic but stored in the Dharma Flat File (FF) system, this is achieved by using the
CREATE PUBLIC SYNONYM command for the desired tables. Users can then use the
synonym without any qualification to access the table assuming they have been granted
access permission on the table. Access permissions can be granted using the GRANT
command.

When a system uses Dynamic Metadata, creating a permanent synonym is not an effective
mechanism as the tables of the database are dynamic in nature and could change from one
connection to another. In order to provide the same functionality for systems that use
Dynamic Metadata, a flag has been introduced to mark a table as a Public table. At the
time the information about the table is returned by the dynamic metadata stub functions
(dhcs_get_tblinfo and StorageManagerHandle.getTableInfo), a table may be flagged as Public
by setting the ispublic flag to TRUE. When a tables is flagged as a public table, a public
synonym of the same name is automatically created and all access rights on the table are
granted to all users (public).

Note: If a table owned by the current user has the same name as a public table, any non-
qualified reference to the table will refer to the user’s table. It is not possible to have two
public tables with the same name but owned by different users.
Dharma Systems Inc 5-65

User Guide
5.7 TUPLE IDENTIFIER INTERFACES

5.7.1 dhcs_alloc_tid
Allocates space for an empty tuple identifier for a storage manager and initializes the
tuple identifier values.

Syntax
extern dhcs_status_t

dhcs_alloc_tid (

 void **tid_hdl,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
OUT tid_hdl
A handle for the tuple identifier (tid).

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
The function dhcs_alloc_tid allocates memory for a tid handle. The tid handle speci-
fies a storage-manager-specific structure that contains the value or values that make
up a tid. This interface is a utility function that the storage manager itself as well as
the SQL engine calls routinely.

In addition to allocating memory for the tid handle, dhcs_alloc_tid must also initialize
the allocated tid to a unique invalid value. This value should compare as equal to
itself, but not equal to any valid tid.

For instance, the sample implementation provided with the Dharma SDK implements
tids as the char data type; its implementation of dhcs_alloc_tid initializes the value of
an allocated tid to 0xFF.

5.7.2 dhcs_assign_tid
Copies the value for a tuple identifier (tid).

STATUS_OK Successful completion.
5-66 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
Syntax
extern dhcs_status_t

dhcs_assign_tid (

 void *from_tid,

 void *to_tid,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN from_tid
A tid whose value is to be copied.

OUT to_tid
The updated tid value.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
dhcs_assign_tid is the mechanism to copy tid values.

5.7.3 dhcs_char_to_tid
Converts a character string to a tid.

Syntax
extern dhcs_status_t

dhcs_char_to_tid (

 short len,

 char *in_buf,

 void *tid,

 void *conn_hdl

) ;

STATUS_OK Successful completion.
Dharma Systems Inc 5-67

User Guide
Returns
dhcs_status_t

Arguments
IN len
Length of the input buffer.

IN in_buf
The character string to be converted to a tid. The maximum allowable size of in_buf is
255.

OUT tid
The resultant tid.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
The dhcs_char_to_tid routine converts a tid from its string form to its internal storage
manager form. The tid is stored in in_buf as a NULL terminated string. The size of
the string is indicated by len.

5.7.4 dhcs_compare_tid
Compares two tids and returns a value indicating equality or relative size.

Syntax
extern short

dhcs_compare_tid (

 void *tid1,

 void *tid2,

 void *conn_hdl

) ;

Returns
short

STATUS_OK Successful completion.

1 tid1 is greater than tid2.

0 The tid values are equal

-1 tid1 is less than tid2.
5-68 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
Arguments
IN tid1
One of the tids to be compared.

IN tid2
The tid to be compared with tid1.

Description
dhcs_compare_tid compares two tid values for equality and relative size. Two tids are
equal if they are both the NULL_TID for that storage manager, or if they both point to
the same row of some table.

Note that since the format of a tid is specific to the particular storage manager, the
mechanism by which the storage manager determines that the tids are equal is also
specific to the storage manager.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

5.7.5 dhcs_free_tid
Frees the space for a tuple identifier (tid) that was created within a storage manager.

Syntax
extern dhcs_status_t

dhcs_free_tid (

 void *tid,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN tid_hdl
The handle for the tuple identifier (tid).

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK

STATUS_OK Successful completion.
Dharma Systems Inc 5-69

User Guide
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

5.7.6 dhcs_tid_to_char
Converts a tid to a character string.

Syntax
extern dhcs_status_t

dhcs_tid_to_char (

 short len,

 void *tid,

 char *out_buf,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN len
Length of output buffer.

IN tid
Tuple id to convert.

OUT out_buf
The resultant character string. The maximum allowable size of out_buf is 255.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
The dhcs_tid_to_char routine converts a tid from its internal storage manager form to
a string form. The buffer to store the string is indicated by out_buf. The size of the
string is indicated by len. Note that since the format of a tid is specific to the particular
storage manager, the character string format is also storage manager specific. The
only requirement is that the character string format be such that it can be converted
back to its internal form using the dhcs_char_to_tid routine.

STATUS_OK Successful completion.
5-70 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
5.8 TRANSACTION INTERFACES

5.8.1 dhcs_abort_trans
Aborts, or rolls back, a transaction.

Syntax
extern dhcs_status_t

dhcs_abort_trans (

 void *conn_hdl

) ;

Returns

Arguments
IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
Terminates the current transaction begun by the last call to dhcs_begin_trans. The
storage system must undo all changes made to tables and indexes during the transac-
tion.

5.8.2 dhcs_begin_trans
Starts a transaction.

Syntax
extern dhcs_status_t

dhcs_begin_trans (

 void*conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN conn_hdl

STATUS_OK Successful completion.

STATUS_OK Successful completion.
Dharma Systems Inc 5-71

User Guide
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
Begins a transaction. The transaction that is started is the current transaction within
the storage environment. All operations that are executed once the transaction is
begun, until either dhcs_commit_trans or dhcs_abort_trans is executed, are consid-
ered to be part of this current transaction. A storage system must take whatever
actions are appropriate to ensure the transaction properties of atomicity, isolation, con-
sistency, and durability. The SQL engine does not enforce these properties.

5.8.3 dhcs_commit_trans
Commits a transaction.

Syntax
extern dhcs_status_t

dhcs_commit_trans (

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
Terminates the current transaction begun by the last call to dhcs_begin_trans.

The storage system must make permanent any changes to tables and indexes made
during the transaction, and make the changes visible so that they may be accessed by
current and subsequent transactions according to the concurrency control policies
implemented by the storage manager.

STATUS_OK Successful completion.

DHCS_TRANSACTION_ROLLBACK If the storage system has decided to rollback the trans-
action.
5-72 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
5.9 MISCELLANEOUS FUNCTIONS

5.9.1 dhcs_get_error_mesg
Returns the error message for any error code generated by the storage manager.

Syntax
extern dhcs_status_t

dhcs_get_error_mesg (

 long errcode,

 unsigned short msgbuf_len,

 char *msgbuf,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN errcode
The error code returned by the storage manager through dhcs_status_t during execu-
tion of a routine. The code must be between -1000 and -9999.

IN msgbuf_len
Length of the error message buffer.

OUT msgbuf
Pointer to the buffer containing the error message.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
The SQL engine calls dhcs_get_error_mesg when it receives an error code generated
by the storage manager. The storage manager can return such error codes during exe-
cution of any routine, through dhcs_status_t.

dhcs_get_error_mesg provides a mechanism for the SQL engine to retrieve message
text associated with the error code from the storage manager. The source file

STATUS_OK Successful completion.

-1 Otherwise
Dharma Systems Inc 5-73

User Guide
$TPEROOT/odbcsdk/src/demo.c implements the dhcs_get_error_mesg routine.
Implementations add #define directives to the file to associate a mnemonic string with
an error return code. They also add entries to the dhcs_error_table structure that asso-
ciate an actual error message with the mnemonic code. The following example shows
excerpts from the sample implementation's version:

Example 5-5: Adding Error Messages

/*

 * DHCS error returns. The range is between -1000 and -9999.

 */

#define DHCS_ERR_NOTYET -1001L

#define DH_DEMO_MAX_TABLES_EXCEEDED -1002L

#define DH_DEMO_MAX_INDEXES_EXCEEDED -1003L

.

.

.

/*

 * Error table listing the error codes and the error messages.

 */

 static dhcs_err_entry_t dhcs_error_table [] = {

{ DHCS_ERR_NOTYET, "Not yet implemented" },

{ DH_DEMO_MAX_TABLES_EXCEEDED, "Maximum number of tables
allowed exceeded" },

{ DH_DEMO_MAX_INDEXES_EXCEEDED, "Maximum number of indexes
allowed exceeded" },

.

.

.

5.9.2 dhcs_rss_cleanup

Syntax
extern dhcs_status_t

dhcs_rss_cleanup (

 void *conn_hdl

) ;

Returns
dhcs_status_t

STATUS_OK Successful completion.
5-74 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
Arguments
IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
The dhcs_rss_cleanup routine is used to close a database and clean up the storage
environment. The specific functions performed by this routine are implementation-
dependent.

5.9.3 dhcs_rss_get_info
Returns details on how a storage manager supports various types of indexes and other
properties.

Syntax
extern dhcs_status_t

dhcs_rss_get_info(

 dhcs_rss_info_t info_type,

 void *input_buffer,

 unsigned short out_buffer_len,

 void *out_buffer,

 unsigned short *out_buffer_size,

 void *conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN info_type
The type of information which is being requested. See the Info Type Values discussion
on page 5-77 for details on valid info_type values.

IN input_buffer
A one-character flag that specifies the type of index the SQL engine is requesting
information about. CREATE INDEX statements specify the index type in the optional
TYPE argument, and the SQL engine calls dhcs_rss_get_info for details on the prop-
erties of each index type. (If the CREATE INDEX statement omits the TYPE argu-
ment, the SQL engine sets the index type to B.)

STATUS_OK Successful completion.
Dharma Systems Inc 5-75

User Guide
The index type does not imply any particular indexing technique. It is an arbitrary
flag that allows the storage manager to indicate different properties for multiple types
of indexes. The SQL engine calls dhcs_rss_get_info for each index type, and the stor-
age manager can respond with different index properties for each type. (For instance,
that different index types support different comparison operators.)

Note The SQL engine does not supply an index type when it calls
dhcs_rss_get_info with the DHCS_IX_UPD_REQUIRED info_type
value. In that case, input_buffer is null, and the SQL engine assumes that
the response is true for all index types.

IN out_buffer_len
The length of the output buffer.

INOUT out_buffer
A buffer allocated by the SQL engine in which the storage manager is to return the
requested information. Depending on the info type, the storage manager either returns
a Boolean value or an array of unsigned bytes in out_buffer:

OUT out_buffer_size
The total number of bytes that are available to be returned by the storage manager. If
out_buffer_size is less than out_buffer_len, then it indicates the number of bytes
within out_buffer that were actually used. If out_buffer_size is greater than
out_buffer_len, then out_buffer is assumed to be completely full, and out_buffer_size
indicates the actual number of bytes that would have been returned had out_buffer
been large enough.

IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
The SQL engine calls dhcs_rss_get_info to get details on the properties of different
types of indexes supported by a storage manager, or to get details on other characteris-
tics of the storage manager. The info_type argument specifies the property of interest.
When information about indexes is being retrieved, the input_buffer argument speci-
fies the index type

The output buffer is allocated by the SQL engine. Its size is indicated by
out_buffer_len. For most info_type values, the output buffer is a Boolean that indi-

Boolean A character. If set to 1 it indicates TRUE. If set to 0 it indicates
FALSE. With the exception of
DHCS_IX_PUSH_DOWN_RESTRICTS, the storage manager
returns a Boolean value for all info_type values.

Array For the DHCS_IX_PUSH_DOWN_RESTRICTS info_type,
out_buffer is an array of unsigned bytes representing the operators
for which the storage system supports push-down processing.
5-76 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
cates support or lack of support for the particular property specified by info_type. The
storage manager indicates the number of bytes available to be returned by setting
out_buffer_size.

Info Type Values
DHCS_IX_ALL_COMPONENTS

DHCS_IX_COMPUTE_AGGR

DHCS_IX_FETCH_ALL_FIELDS

DHCS_IX_PUSH_DOWN_RESTRICTS

Description: Specific to indexes that include multiple table columns (multiple-com-
ponent indexes). When performing an index scan, whether search
values must be provided for all components. If TRUE is returned in
response to DHCS_IX_ALL_COMPONENTS, then the storage man-
ager is indicating that when the SQL engine is performing an index
scan, within the index_search_vals list, a comparison value must be
provided for all components of the index.

Input Parameter: index_type

Output Type: Boolean

Description: Whether the storage manager supports the SQL MIN and MAX aggre-
gate functions. (In other words, if the storage manager returns TRUE to
DHCS_IX_SORT_ORDER, and returns DHCS_IXOP_FIRST, and
DHCS_IXOP_LAST in response to
DHCS_IX_PUSH_DOWN_RESTRICTS, it should also return TRUE to
DHCS_IX_COMPUTE_AGGR.)

Input Parameter: index_type

Output Type: Boolean

Description: If TRUE is returned in response to DHCS_IX_FETCH_ALL_FIELDS,
then the storage manager is indicating that in response to a call to
dhcs_ix_scan_fetch, the storage system is able to return all of the fields
of the record, and not just the index component fields. The SQL engine
takes advantage of this property to avoid tpl_fetch calls.

Input Parameter: index_type

Output Type: Boolean

Description: Comparison operators which the storage manager can process during
index scans for the specified type of index. The return value is an array
of unsigned bytes indicating which operators are supported by the stor-
age manager. The SQL engine will only push down processing of oper-
ators that are contained within the list that the storage manager returns.
The SQL engine uses this list as the basis for the operator input argu-
ment to dhcs_ix_scan_fetch (page 5-32) and dhcs_ix_scan_open. See
Table 5-2: on page 5-38 for a list of the valid values. If the storage man-
ager indicates it does not support processing of an index comparison
operator, the SQL engine processes the operator internally.
Dharma Systems Inc 5-77

User Guide
DHCS_IX_SCAN_ALLOWED

DHCS_IX_SORT_ORDER

DHCS_IX_TID_SORTED

Input Parameter: index_type

Output Type: Array of unsigned bytes

Description: Whether indexes of the specified type support index scans. Storage
managers return FALSE for indexes that are inherently non-scan-ori-
ented, such as hash indexes.

Input Parameter: index_type

Output Type: Boolean

Description: Whether indexes of the specified type are sorted. In other words,
whether a scan on the index returns records in the order of the index
key.

Input Parameter: index_type

Output Type: Boolean

Description: Whether indexes of the specified type return records sorted by tuple
identifier. Ordinarily, indexes only guarantee to return records that meet
the provided comparison criteria and the records are not sorted by tuple
identifier. However, if the storage manager sets
DHCS_IX_TID_SORTED to TRUE, the SQL engine can significantly
optimize processing of compound predicates that specify multiple
indexes on the same table (including specifying the same index multiple
times).

For instance, the following search condition benefits from returning
records that are sorted by tuple identifier:

WHERE C1 CONTAINS 'ODBC' AND C1 CONTAINS 'SQL'

In this case, the SQL engine first retrieves the tuple identifiers returned
by the first predicate, then retrieves the tuple identifiers returned by the
second predicate, and performs an intersect operation on the two sets.
This intersect operation is much more efficient if the SQL engine can
assume the sets are returned in tuple identifier order.

Typically, to support DHCS_IX_TID_SORTED, storage managers need
to perform special processing at run time. Or, if a table is loaded with
rows in index key order (resulting in the index key and tuple identifier
sort order being the same), storage managers can support
DHCS_IX_TID_SORTED for that index key.

Input Parameter: index_type

Output Type: Boolean
5-78 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
DHCS_IX_UPD_REQUIRED

DHCS_DISABLE_AUTH_CHECK

5.9.4 dhcs_rss_init
Opens a database and initializes the storage environment for a user.

Syntax
extern dhcs_status_t

dhcs_rss_init (

 const char *database,

 const char *userid,

Description: Whether the SQL engine must update indexes after an insert, update, or
delete operation on a table.

If the storage manager sets DHCS_IX_UPD_REQUIRED to TRUE, it
indicates that the SQL engine must directly manage the updating of
indexes in addition to tables. When an SQL INSERT, UPDATE, or
DELETE statement is executed on some table, in addition to calling
dhcs_tpl_insert, dhcs_tpl_update, or dhcs_tpl_delete on the table, the
SQL engine will execute dhcs_ix_insert, or dhcs_ix_delete on the corre-
sponding indexes.

If FALSE is returned, then the SQL engine will assume that the index will
be updated indirectly by the storage manager as a side effect of the exe-
cution of dhcs_tpl_insert, dhcs_tpl_update, or dhcs_tpl_delete.

Input Parameter: None

Output Type: Boolean

Description: If TRUE is returned in response to
DHCS_DISABLE_AUTH_CHECK, then the storage manager
should not do an authorization check when accessing an object owned
by a user other than the current user. According to the SQL Standard,
users can access a table, or any database object, only if the object is
owned by the user, the user has explicit permissions to access the
table, or the user is the DBA. The Dharma server carries out authoriza-
tion checks to ensure that a user has access to any objects referenced.
Permissions to access a table are granted by the owner to other users
by means of the GRANT command. In certain systems where all the
database objects are required to be accessible, issuing separate
GRANT statements for each of the tables is cumbersome. In such sys-
tems, disabling authorization checks provides a simpler solution.

This function is called once per connection after the connection has
been made to the database system, so the storage system can differen-
tiate based on the user and database specified, disabling authentication
for some users in some databases while leaving it enabled for others.

Input Parameter: None

Output Type: Boolean
Dharma Systems Inc 5-79

User Guide
 const char *passwd

 const char *dboptions

 void **conn_hdl

) ;

Returns
dhcs_status_t

Arguments
IN database
The name of the database to be opened. This name is created by the mdcreate utility
(see Appendix A) and used thereafter to refer to a particular proprietary storage sys-
tem.

IN userid
The name of the user as provided on the connect call.

IN passwd
The password of the user as provided on the connect call.

IN dboptions
The implementer specified connection information as provided by the user.

OUT conn_hdl
An implementation-specific handle that identifies the user connection.

The conn_hdl argument is relevant only in the Dharma SDK Desktop configuration.
In that environment, conn_hdl provides a mechanism for a storage manager to identify
multiple user connections. (In the Client/Server configuration of the Dharma SDK,
each connection creates a separate instance of the SQL engine by spawning a separate
process. This mechanism is not available in the Desktop Configuration, where all
connections go through a single DLL.)

In the Desktop configuration, storage managers can optionally supply a value in
conn_hdl when the SQL engine calls dhcs_rss_init. The data type of the argument
and details of how the storage manager uses it to distinguish between different user
connections is up to the storage manager. The SQL engine passes any value supplied
in response to dhcs_rss_init as the conn_hdl input argument to all subsequent storage
interface calls for the duration of the connection. If the storage manager does not
return a value in response to dhcs_rss_init, the SQL engine passes a null pointer on
subsequent calls.

Description
The dhcs_rss_init routine is used to initialize a connection by opening a database and
initializing the storage manager environment. dhcs_rss_init is only called when the
SQL engine starts, and it is the only function called at startup.

STATUS_OK Successful completion.
5-80 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
Implementations must perform whatever specific functions are required to initialize a
connection to the proprietary storage system.

Note that the database name, user name, password and dboptions arguments are
opaque strings to the SQL engine. No attempt is made by the SQL engine to verify the
format or validity of any of these strings. The storage environment should authenticate
the database name, user name, password and implementer defined connection options
according to the specific requirements of the storage environment.

5.9.5 dhcs_rss_initcall
Indicates to the storage manager that a new SQL request is to be executed.

Syntax
extern dhcs_status_t

dhcs_rss_initcall(

 void * conn_hdl

);

Returns
dhcs_status_t

Arguments
IN conn_hdl
An implementation-specific handle that identifies the user connection. The SQL
engine supplies the same value here as the storage manager supplied in response to the
dhcs_rss_init routine. The conn_hdl argument is relevant only in the Dharma SDK
Desktop configuration, where storage managers use it to distinguish between multiple
user connections. See section 5.9.4 for more detail.

Description
Indicates to the storage manager that a new SQL request is about to be executed. The
function performed by this routine is implementation-specific based on the require-
ments of the storage environment.

STATUS_OK Successful completion.
Dharma Systems Inc 5-81

User Guide
5.10 UTILITY FUNCTIONS
Unlike the storage interface functions, the following utility functions are already
implemented. Storage managers call the functions for data conversion and compari-
son.

5.10.1 dhcs_compare_data
Compares two values of the same data type and generates a value indicating equality
or relative size.

Syntax
extern dhcs_status_t dhcs_compare_data (

 int data_type,

 int len1,

 void *ptr1,

 int len2,

 void *ptr2,

 short *result

);

Returns
dhcs_status_t

Arguments
IN data_type
The data type of the values to be compared. Note that dhcs_compare_data does not
support the long data types DHCS_LVC and DHCS_LVB.

len1
Length of the input buffer for the first value.

ptr1
Pointer to the input buffer for the first value.

len2
Length of the input buffer for the second value.

ptr2
Pointer to the input buffer for the second value.

OUT result
The result of the comparison:

STATUS_OK Successful completion.

1 Value 1 is greater than value 2.

0 The values are equal.

-1 Value 1 is less than value 2.
5-82 Dharma Systems Inc

‘C’ Stubs Storage Interface Reference
5.10.2 dhcs_conv_data
Converts data from one host type to another.

Syntax
extern dhcs_status_t

dhcs_conv_data (

long input_type,

long input_len,

void *input_ptr,

long output_type,

long output_len,

void *output_ptr

);

Returns
dhcs_status_t

Arguments
IN input_type
Input data type to be converted. Table 5–6 lists valid values. Note that
dhcs_conv_data does not support the long data types DHCS_LVC and DHCS_LVB.

IN input_len
Length of input buffer containing the data to be converted.

IN input_ptr
Pointer to the input buffer containing the data to be converted.

IN output_type
Desired data type to convert the input data to. Table 5–6 lists valid values.

IN output_len
Length of the output buffer to contain the converted data.

STATUS_OK Successful completion.

Table 5-6: Type Names for Data Type Conversion

DHCS_BIGINT DHCS_BINARY DHCS_BIT

DHCS_CHAR DHCS_DATE DHCS_DOUBLE

DHCS_INTEGER DHCS_MONEY DHCS_NUMERIC

DHCS_REAL DHCS_SMALLFLOAT DHCS_SMALLINT

DHCS_TIME DHCS_TIMESTAMP DHCS_TINYINT
Dharma Systems Inc 5-83

User Guide
OUT output_ptr
Pointer to the output buffer that contains the converted data.
5-84 Dharma Systems Inc

Chapter 6

Java Stubs Storage Interface Reference

6.1 COMMON CLASSES
The Dharma SDK provides a number of classes that are used as common arguments
across several different storage interfaces. Table 6–1 lists the common classes, and
the following sections describe them in more detail.

6.1.1 DharmaRecord
This class holds a record. It is used by TableHandle.getRecord(), TableScanHan-
dle.getNextRecord() and IndexScanHandle.getNextRecord() to return a record from
the storage system to the SQL Engine.

Definition
public class DharmaRecord

Table 6-1: Common classes

Class Purpose

DharmaRecord Holds a record.

RecordID A unique identifier for a record within a table.

DharmaArray A container class extended by TableFields, IndexFields and
FieldValues.

FieldValue Holds the data value of a field.

FieldValues Holds an array of elements of FieldValue.

TableField Holds information describing a field in a table.

TableFields Holds an array of elements of TableField

IndexField Holds information describing a field in an index.

IndexFields Holds an array of elements of IndexField.

DharmaLongVar-
CharData

Holds long varchar data, null information & length of the data.

DharmaLongVarBi-
naryData

Holds long varbinary data, null information & length of the data.

ProcedureColumn Holds information describing the argument of the procedure/function

ProcedureColumns Holds an array of elements of ProcedureColumn

ProcedureMeta-
Data

Holds metadata information of a procedure/function.
Dharma Systems Inc 6-1

User Guide
Members
RecordID recordID
Record id for this record.

boolean isNull[]
An array of flags to indicate whether a column is holding a null value.

Object record[]
An array of Objects to hold the field values.

int noOfColumns
Number of columns.

Methods

6.1.1.1 DharmaRecord
Constructs a DharmaRecord.

Syntax
public

DharmaRecord(int fieldCount) throws DharmaStorageException

Returns
A DharmaRecord object. Throws DharmaStorageException if there is an error.

Arguments
IN int fieldCount
A count of the number of fields in the record.

Description
Creates a DharmaRecord of the given size. DharmaRecords are used to return rows
from table or index operations.

6.1.1.2 setFieldValue
Sets the value for a field in a DharmaRecord.

Syntax
public void

setFieldValue(int fieldIndex,

 Object fieldValue) throws DharmaStorageException
6-2 Dharma Systems Inc

Java Stubs Storage Interface Reference
Returns
None. Throws DharmaStorageException if there is an error.

Arguments
IN int fieldIndex
Index of the field in the record. Indexes start at 0.

IN Object fieldValue
Data for the field.

Description
Stores the Object representing the field value in the corresponding entry in the Dhar-
maRecord.

6.1.1.3 getFieldValue
Gets the value for a field from a DharmaRecord.

Syntax
public Object

getFieldValue (int fieldIndex) throws DharmaStorageException

Returns
Value of the field as an Object. Throws DharmaStorageException if there is an error.

Arguments
IN int fieldIndex
Index of the field in the record. Indexes start at 0.

Description
Gets the Object representing a field value from the corresponding entry in the Dhar-
maRecord.

6.1.1.4 setNull
Marks a field in a DharmaRecord as NULL.

Syntax
public void

setNull(int fieldIndex) throws DharmaStorageException

Returns
None. Throws DharmaStorageException if there is an error.
Dharma Systems Inc 6-3

User Guide
Arguments
IN int fieldIndex
Index of the field in the record. Indexes start at 0.

Description
Marks the corresponding field in the DharmaRecord as having a NULL value.

6.1.1.5 isNull
Returns whether or not a field in a DharmaRecord is NULL.

Syntax
public boolean

isNull(int fieldIndex) throws DharmaStorageException

Returns
Boolean, true if the field is NULL, false otherwise. Throws DharmaStorageException
if there is an error.

Arguments
IN int fieldIndex
Index of the field in the record. Indexes start at 0.

Description
Returns a boolean value indicating whether the corresponding field in the Dhar-
maRecord has a NULL value. A return value of TRUE indicates that the field is
NULL.

6.1.1.6 setRecordID
Sets the record ID that the DharmaRecord corresponds to.

Syntax
public void

setRecordID(RecordID rId) throws DharmaStorageException

Returns
None. Throws DharmaStorageException if there is an error.

Arguments
IN RecordID rID
The Record ID to associate the DharmaRecord with.
6-4 Dharma Systems Inc

Java Stubs Storage Interface Reference
Description
Sets the RecordID member of the DharmaRecord. The RecordID provides a unique
identifier of the row in the associated table that the DharmaRecord contains values
for.

6.1.1.7 getRecordID
Returns the record ID that the DharmaRecord corresponds to.

Syntax
public RecordID

getRecordID() throws DharmaStorageException

Returns
The Record ID the DharmaRecord is associated with. Throws DharmaStorageExcep-
tion if there is an error.

Arguments
None

Description
Gets the RecordID member of the DharmaRecord. The RecordID provides a unique
identifier of the row in the associated table that the DharmaRecord contains values
for.

6.1.2 RecordID
A RecordID is a unique identifier for a record within a table. The implementation pro-
vided by Dharma uses a long integer value to uniquely identify a record. If the storage
system needs to represent records using a more sophisticated mechanism, the Recor-
dID class implementation provided by Dharma can be modified as required.

Definition
public class RecordID

Members
long m_recordID
Record Identifier is represented as a long number.

boolean m_isSet
Flag denotes if the RecordID has been set.
Dharma Systems Inc 6-5

User Guide
Methods

6.1.2.1 RecordID
Constructs a RecordID.

Syntax
public

RecordID(long rID) throws DharmaStorageException

Returns
A RecordID object. Throws DharmaStorageException if there is an error.

Arguments
IN long rID
A long value representing the Record ID.

Description
Constructor for a RecordID. The RecordID provides a unique identifier of a row in a
table. By default the RecordID class uses a long to store the identifier. If the storage
system needs to represent records using a more sophisticated mechanism, the Recor-
dID class implementation provided by Dharma can be modified as required.

6.1.2.2 RecordID
Default constructor.

Syntax
public

RecordID() throws DharmaStorageException

Returns
A RecordID object. Throws DharmaStorageException if there is an error.

Arguments
None

Description
Default constructor for a RecordID.

6.1.2.3 setRecordID
Sets the RecordID.
6-6 Dharma Systems Inc

Java Stubs Storage Interface Reference
Syntax
public void

setRecordID (RecordID rID) throws DharmaStorageException

Returns
None. Throws DharmaStorageException if there is an error.

Arguments
IN RecordID rID
The RecordID to set the value to.

Description
Sets the RecordID value.

6.1.2.4 setRecordID
Sets the RecordID.

Syntax
public void

setRecordID(long l) throws DharmaStorageException

Returns
None. Throws DharmaStorageException if there is an error.

Arguments
IN long l
A long value representing the Record ID.

Description
Sets the RecordID value. By default the RecordID class uses a long to store the iden-
tifier. If the storage system needs to represent records using a more sophisticated
mechanism, the RecordID class implementation provided by Dharma can be modified
as required and this method would be changed to reflect the new internal representa-
tion. This method is used only internally within the RecordID class.

6.1.2.5 setRecordID
Sets the RecordID.

Syntax
public void
Dharma Systems Inc 6-7

User Guide
setRecordID(String s) throws DharmaStorageException

Returns
None. Throws DharmaStorageException if there is an error.

Arguments
IN String s
A String representing the Record ID.

Description
Sets the RecordID value.

6.1.2.6 getString
Returns a string representation of the RecordID.

Syntax
public String

getString() throws DharmaStorageException

Returns
A String value representing the Record ID.. Throws DharmaStorageException if there
is an error.

Arguments
None

Description
The RecordID.getString method converts a RecordId from its internal storage man-
ager form to a string form. Note that because the format of the RecordID is specific to
the particular storage manager, the character string format is also storage manager spe-
cific. The only requirement is that the character string format be such that it can be
converted back to its internal form using the RecordID.setRecordID(String s) method.
Being able to convert the RecordID to a string representation allows client tools to
retrieve the RecordID and use it in queries.

6.1.2.7 getLong
Returns a long representation of the RecordID.

Syntax
public long

getLong() throws DharmaStorageException
6-8 Dharma Systems Inc

Java Stubs Storage Interface Reference
Returns
A long value representing the Record ID. Throws DharmaStorageException if there
is an error.

Arguments
None

Description
The RecordID.getLong method converts a RecordID from its internal storage manager
form to a long form. By default the RecordID’s internal representation is a long. If
the storage system needs to represent records using a more sophisticated mechanism,
then the RecordID class can be modified appropriately and this method would be
changed to reflect the new internal representation. This method is used only internally
within the RecordID class.

6.1.2.8 compareRecordID
Compares RecordIDs.

Syntax
public int

compareRecordID(RecordID cRecordID)

 throws DharmaStorageException

Returns
An int value representing the result of the comparison.

• Returns 0 if this RecordID and cRecordID are equal.

• Returns 1 if this RecordID is greater than cRecordID.

• Returns -1 if this RecordID is less than cRecordID.

Arguments
IN RecordID cRecordId
RecordID to compare this RecordID with.

Description
The RecordID.compareRecordID method compares two RecordID values for equality
and relative size. Two RecordIDs are equal if they are both the null RecordID (isRe-
cordIDSet returns FALSE) for that storage manager, or if they both point to the same
row of some table. Note that since the format of a RecordID is specific to the particu-
lar storage manager, the mechanism by which the storage manager determines that the
RecordIDs are equal is also specific to the storage manager.
Dharma Systems Inc 6-9

User Guide
6.1.2.9 isRecordIDSet
Returns a boolean value indicating if the RecordID has been set.

Syntax
public boolean

isRecordIDSet()

Returns
A boolean value indicating if the RecordID has been set. A value of TRUE indicates
that the value has been set.

Arguments
None

Description
This method indicates if the RecordID contains a valid RecordID value or not.

6.1.3 DharmaArray
This is a container class. Classes TableFields, IndexFields and FieldValues extend this
class to store TableField, IndexField and FieldValue. This class uses an array to hold
the Objects.

Definition
public class DharmaArray

Members
int m_size
Size of array.

Object m_dataArray[]
Array of objects.

Methods

6.1.3.1 DharmaArray
Constructs a DharmaArray.

Syntax
public

DharmaArray(int sz, Object dataArray[])

 throws DharmaStorageException
6-10 Dharma Systems Inc

Java Stubs Storage Interface Reference

Returns
A DharmaArray object. Throws DharmaStorageException if there is an error.

Arguments
IN int sz
Size of array to create

IN Object dataarray[]
Array of Objects to store in DharmaArray

Description
This constructs a DharmaArray of the specified size and places the Objects passed in
in the dataarray argument into the DharmaArray.

6.1.3.2 getNthElement
Gets the nth element from the array. Index starts from 0.

Syntax
public Object

getNthElement(int index) throws DharmaStorageException

Returns
Object representing the nth element in the DharmaArray. Throws DharmaStorageEx-
ception if there is an error.

Arguments
IN int index
Index of Object in array to return.

Description
This method returns Nth Object in the DharmaArray where N is specified by the index
argument

6.1.3.3 getSize
Gets the size of the array. Index starts from 0.

Syntax
public int

getSize() throws DharmaStorageException
Dharma Systems Inc 6-11

User Guide
Returns
Int representing the size of the DharmaArray. Throws DharmaStorageException if
there is an error.

Arguments
None

Description
This method returns the size of the DharmaArray

6.1.4 FieldValue
The FieldValue class represents a field in an index or table.

Definition
public class FieldValue

Members
short m_fieldID;
Contains the table field identifier (for Table operations) or index key identifier (for
Index operations)

short m_tableFieldID;
This field is used only during index scan operations. It contains the table field identi-
fier for the field value needed to satisfy a particular query. For table fields that are
also index keys this field contains the table field identifier that corresponds to the
index key identifier in the index. If a query requires a field value that is not an index
key, the SQL engine sets fieldID to StorageCodes.INVAL_FLDID to indicate there is
no index key that corresponds to the field

If the storage system returned a value of TRUE when the SQL engine called GetStor-
ageManagerInfo with an infoType of StorageCodes.IX_FETCH_ALL_FIELDS, the
storage system fetches values for all fields, not just those that are index component
fields, when it processes index scans.

Object m_data
An Object containing the field data.

short m_typeID
The data type of the field.

boolean m_isNull
A Boolean value that specifies whether the column contains a null value. A value of
TRUE indicates that the column is null.

short m_maxLength
An integer value that specifies:
6-12 Dharma Systems Inc

Java Stubs Storage Interface Reference
- For fixed-length data types, the defined length

- For variable-length data types, the maximum length

short m_dataLength
The actual length of the data (for variable-length data types only).

short m_width
The maximum number of digits for numeric types.

short m_scale
The number of digits to the right of the decimal point for numeric types.

Methods

6.1.4.1 FieldValue
Constructs a FieldValue.

Syntax
public

FieldValue (short fieldID, Object val,short type,

 boolean isnull) throws DharmaStorageException

Returns
A FieldValue object. Throws DharmaStorageException if there is an error.

Arguments
IN short fieldID
ID of the field.

IN Object val
Data for the field.

IN short type
Type of the field.

IN boolean isnull
Specifies whether column is null or not.

Description
This method constructs a FieldValue object.

6.1.4.2 FieldValue
Constructs a FieldValue.
Dharma Systems Inc 6-13

User Guide
Syntax
public

FieldValue(short fieldID, Object val)

 throws DharmaStorageException

Returns
A FieldValue object. Throws DharmaStorageException if there is an error.

Arguments
IN short fieldID
ID of the field.

IN Object val
Data for the field.

Description
This method constructs a FieldValue object.

6.1.4.3 FieldValue
Default constructor. Constructs a FieldValue Object.

Syntax
public

FieldValue() throws DharmaStorageException

Returns
A FieldValue object. Throws DharmaStorageException if there is an error.

Arguments
None

Description
This method constructs a FieldValue object.

6.1.4.4 getFieldID
Returns the field id.

Syntax
public short

getFieldID() throws DharmaStorageException;
6-14 Dharma Systems Inc

Java Stubs Storage Interface Reference
Returns
A short value representing the field id. Throws DharmaStorageException if there is
an error.

Arguments
None

Description
This method returns the field id associated with the FieldValue object. This id identi-
fies the field within the table or index that the FieldValue is associated with. When a
storage manager returns TRUE for the StorageManager.getStorageManagerInfo
method with the StorageCodes.IX_FETCH_ALL_FIELDS flag, if the field to be
retrieved is not included among the index components, this value will be set to Stor-
ageCodes.INVAL_FLDID.

6.1.4.5 setFieldID
Sets the field id.

Syntax
public void

setFieldID(short fieldID) throws DharmaStorageException

Returns
None. Throws DharmaStorageException if there is an error.

Arguments
IN short fieldID
Value to set field id to.

Description
This method sets the field id associated with the FieldValue object. This id identifies
the field within the table or index that the FieldValue is associated with.

6.1.4.6 getTableFieldID
Returns the table field id.

Syntax
public short

getTableFieldID() throws DharmaStorageException
Dharma Systems Inc 6-15

User Guide
Returns
A short value representing the table field id. Throws DharmaStorageException if
there is an error.

Arguments
None

Description
This method gets the table field id associated with the FieldValue object. This id iden-
tifies the field within the table that corresponds to the index in use. This value is used
only during IndexScanHandle.getNextRecord

6.1.4.7 setTableFieldID
Sets the table field id.

Syntax
public void

setTableFieldID(short tableFieldID)

 throws DharmaStorageException

Returns
None. Throws DharmaStorageException if there is an error.

Arguments
IN short tableFieldID
Value to set table field id to.

Description
This method sets the table field id associated with the FieldValue object. This id iden-
tifies the field within the table that corresponds to the index in use. This value is used
only during IndexScanHandle.getNextRecord.

6.1.4.8 getMaxLength
Returns the maximum field length.

public short

getMaxLength() throws DharmaStorageException

Returns
A short value representing the maximum field length. Throws DharmaStorageExcep-
tion if there is an error.
6-16 Dharma Systems Inc

Java Stubs Storage Interface Reference
Arguments
None

Description
This method returns an integer value that specifies:

- For fixed-length data types, the defined length

- For variable-length data types, the maximum length

6.1.4.9 setMaxLength
Sets the maximum field length.

Syntax
public void

setMaxLength(short maxLength) throws DharmaStorageException

Returns
None. Throws DharmaStorageException if there is an error.

Arguments
IN short maxLength
Value to set the maximum length to.

Description
This method sets the maximum length of the field to an integer value that specifies:

- For fixed-length data types, the defined length

- For variable-length data types, the maximum length

6.1.4.10 getDataLength
Returns the data length.

Syntax
public short

getDataLength() throws DharmaStorageException

Returns
A short value representing the data length. Throws DharmaStorageException if there
is an error.
Dharma Systems Inc 6-17

User Guide
Arguments
None

Description
This method gets the actual length of the data (for variable-length data types only).

6.1.4.11 setDataLength
Sets the data length.

Syntax
public void

setDataLength(short dataLength)

 throws DharmaStorageException

Returns
None. Throws DharmaStorageException if there is an error.

Arguments
IN short dataLength

Description
This method sets the actual length of the data (for variable-length data types only).

6.1.4.12 getWidth
Returns the width.

Syntax
public short

getWidth() throws DharmaStorageException

Returns
A short value representing the width. Throws DharmaStorageException if there is an
error.

Arguments
None

Description
This method gets the width of the field which is the maximum number of digits for
numeric types.
6-18 Dharma Systems Inc

Java Stubs Storage Interface Reference
6.1.4.13 setWidth
Sets the width.

Syntax
public void

setWidth(short width) throws DharmaStorageException

Returns
None. Throws DharmaStorageException if there is an error.

Arguments
IN short width
Value to set the width to.

Description
This method sets the width of the field which is the maximum number of digits for
numeric types.

6.1.4.14 getScale
Returns the scale.

Syntax
public short

getScale() throws DharmaStorageException

Returns
A short value representing the scale. Throws DharmaStorageException if there is an
error.

Arguments
None

Description
This method gets the scale of the field which is the number of digits to the right of the
decimal point for numeric types.

6.1.4.15 setScale
Sets the scale.
Dharma Systems Inc 6-19

User Guide
Syntax
public void

setScale(short scale) throws DharmaStorageException

Returns
None. Throws DharmaStorageException if there is an error.

Arguments
IN short scale
Value to set the scale to.

Description
This method sets the scale of the field which is the number of digits to the right of the
decimal point for numeric types.

6.1.4.16 getData
Returns the data as an Object.

Syntax
public Object

getData() throws DharmaStorageException

Returns
An Object representing the field data. Throws DharmaStorageException if there is an
error.

Arguments
None

Description
This method gets the Object that contains the data of the field.

6.1.4.17 setData
Sets the data Object.

Syntax
public void

setData(Object val) throws DharmaStorageException
6-20 Dharma Systems Inc

Java Stubs Storage Interface Reference
Returns
None. Throws DharmaStorageException if there is an error.

Arguments
IN Object val
Object to set the data to.

Description
This method sets the Object that contains the data of the field.

6.1.4.18 getTypeID
Returns the field data type.

Syntax
public short

getTypeID() throws DharmaStorageException

Returns
An short value representing the field data type. Throws DharmaStorageException if
there is an error.

Arguments
None

Description
This method gets the SQL data type of the field.

6.1.4.19 setTypeID
Sets the field data type.

Syntax
public void

setTypeID(short type) throws DharmaStorageException

Returns
None. Throws DharmaStorageException if there is an error.

Arguments
IN short type
Value to set the type id to.
Dharma Systems Inc 6-21

User Guide
Description
This method sets the SQL data type of the field.

6.1.4.20 isNull
Returns a value indicating if the field data is NULL.

Syntax
public boolean

isNull() throws DharmaStorageException

Returns
An boolean value indicating if the field data is NULL. A value of TRUE indicates
that the field data is NULL. Throws DharmaStorageException if there is an error.

Arguments
None

Description
This method returns a boolean value indicating if the data of the field is NULL. A
value of TRUE indicates that the data is NULL.

6.1.4.21 setNull
Sets the field data value to NULL.

Syntax
public void

setNull() throws DharmaStorageException

Returns
None. Throws DharmaStorageException if there is an error.

Arguments
None

Description
This method sets a boolean value indicating if the data of the field is NULL. A value
of TRUE indicates that the data is NULL.
6-22 Dharma Systems Inc

Java Stubs Storage Interface Reference
6.1.5 FieldValues
This class holds an array of FieldValue. The SQL Engine passes a FieldValues object
to the storage system when it supplies values to be inserted or updated or to specify
the search criteria for retrieving records.

Definition
public class FieldValues extends DharmaArray

Members
None

Methods

6.1.5.1 FieldValues
Constructs a FieldValues array.

Syntax
public

FieldValues(int noOffields, Object fieldvalues[])

 throws DharmaStorageException

Returns
A FieldValues object. Throws DharmaStorageException if there is an error.

Arguments
IN int nooffields
A count of the number of fields in the array

IN Object fieldValues
The array of field objects.

Description
This method constructs a FieldValues array of the specified size and loads the array
with the Objects provided in the fieldvalues argument.

6.1.5.2 getNth
Gets the Nth element. Index starts from 0.

Syntax
public FieldValue

getNth(int index) throws DharmaStorageException
Dharma Systems Inc 6-23

User Guide
Returns
A FieldValue object. Throws DharmaStorageException if there is an error.

Arguments
IN int index
The index of the fieldValue in the array.

Description
This method gets the Nth Object in the FieldValues array.

6.1.6 TableField
This class holds information describing a field in a table.

Definition
public class TableField

Members
short m_fieldID
The id of the table field.

short m_dataType
The data type of the field.

String m_fieldName
The name of the field.

boolean m_isNullable
Flag to indicate if the field can be NULL. A value of TRUE indicates the field can be
NULL.

short m_maxLength
Specifies :

- For fixed-length data types, the fixed length.

- For variable-length data types, the maximum length.

short m_width
Specifies the maximum number of digits for numeric types.

short m_scale
Specifies the number of digits to the right of the decimal point for numeric types.

Methods

6.1.6.1 TableField
Constructs a TableField.
6-24 Dharma Systems Inc

Java Stubs Storage Interface Reference
Syntax
public

TableField(short fieldID, short type, String fieldName)

 throws DharmaStorageException

Returns
A TableField object. Throws DharmaStorageException if there is an error.

Arguments
IN short fieldID
Id of the field.

IN short type
Data type of the field.

IN String fieldName
Name of the field

Description
Constructs a TableField Object with the specified id, type and field name.

6.1.6.2 getFieldName
Returns the name of the field.

Syntax
public String

getFieldName() throws DharmaStorageException;

Returns
A String Object contaning the name of the field. Throws DharmaStorageException if
there is an error.

Arguments
None

Description
Gets the name of the field as a String.

6.1.6.3 setFieldName
Sets the name of the field.
Dharma Systems Inc 6-25

User Guide
Syntax
public void

setFieldName(String fieldName) throws DharmaStorageException

Returns
None, throws DharmaStorageException if there is an error.

Arguments
IN String fieldName
Name for the field.

Description
Sets the name of the field to the passed String.

6.1.6.4 getFieldID
Returns the id of the field.

Syntax
public short

getFieldID() throws DharmaStorageException;

Returns
A short value representing the field id.

Arguments
None

Description
Gets the field id.

6.1.6.5 setFieldID
Sets the id of the field.

Syntax
public void

setFieldID(short fieldID) throws DharmaStorageException

Returns
None
6-26 Dharma Systems Inc

Java Stubs Storage Interface Reference
Arguments
IN short fieldID
ID for the field.

Description
Sets the field id.

6.1.6.6 getTypeID
Returns the type id of the field.

Syntax
public short

getTypeID() throws DharmaStorageException

Returns
A short value representing the type id.

Arguments
None

Description
Gets the type id of the field.

6.1.6.7 setTypeID
Sets the type id of the field.

Syntax
public void

setTypeID(short typeID) throws DharmaStorageException

Returns
None.

Arguments
IN short typeID

Description
Sets the type id of the field.
Dharma Systems Inc 6-27

User Guide
6.1.6.8 isNullable
Returns a boolean indicating if the field can contain a NULL value.

Syntax
public boolean

isNullable() throws DharmaStorageException

Returns
A boolean indicating if the field can contain NULL values. TRUE indicates that
NULL values are allowed.

Arguments
None

Description
Returns a boolean indicating if the field can contain a NULL value. A value of TRUE
indicates that the field value can be NULL.

6.1.6.9 setNullable
Sets the field as allowed to contain NULL values.

Syntax
public void

setNullable() throws DharmaStorageException;

Returns
None

Arguments
None

Description
Sets a flag indicating that the field can contain a NULL value.

6.1.6.10 setNotNullable
Sets the field as not allowed to contain NULL values.

Syntax
public void

setNotNullable() throws DharmaStorageException
6-28 Dharma Systems Inc

Java Stubs Storage Interface Reference
Returns
None

Arguments
None

Description
Sets a flag indicating that the field can not contain a NULL value.

6.1.6.11 getMaxLength
Returns the maximum length of the field.

Syntax
public short

getMaxLength() throws DharmaStorageException

Returns
A short value representing the length.

Arguments
None

Description
Returns a short value representing the maximum length of the field for variable length
fields. For fixed length fields, returns the fixed length.

6.1.6.12 setMaxLength
Sets the maximum length of the field.

Syntax
public void

setMaxLength(short maxLength) throws DharmaStorageException

Returns
None

Arguments
IN short maxLength
The maximum length of the field.
Dharma Systems Inc 6-29

User Guide
Description
Sets a short value representing the maximum length of the field for variable length
fields. For fixed length fields the value represents the fixed length.

6.1.6.13 getWidth
Returns the width of the field.

Syntax
public short

getWidth) throws DharmaStorageException;

Returns
A short value representing the width.

Arguments
None

Description
Returns a short value representing the maximum number of digits for numeric types.

6.1.6.14 setWidth
Sets the maximum number of digits for numeric types.

Syntax
public void

setWidth(short width) throws DharmaStorageException

Returns
None

Arguments
IN short wd
Width for the field.

Description
Sets a short value representing the maximum number of digits for numeric types.

6.1.6.15 getScale
Returns the scale of the field
6-30 Dharma Systems Inc

Java Stubs Storage Interface Reference
Syntax
public short

getScale() throws DharmaStorageException;

Returns
A short value representing the scale.

Arguments
None

Description
Returns a short value representing the number of digits to the right of the decimal
point for numeric types.

6.1.6.16 setScale
Sets the number of digits to the right of the decimal point for numeric type.

Syntax
public void

setScale(short scale) throws DharmaStorageException

Returns
None

Arguments
IN short sc
Scale for the field.

Description
Sets a short value representing the number of digits to the right of the decimal point
for numeric types.

6.1.7 TableFields
This class holds an array of TableField. The SQL Engine passes a TableField object to
the storage system when it calls StorageManagerHandle.createTable() to create a
table.

Definition
public class TableFields extends DharmaArray
Dharma Systems Inc 6-31

User Guide
Members
None

Methods

6.1.7.1 TableFields
Constructs a TableFields array.

Syntax
public

TableFields(int noOfFields,Object tablefields[])

 throws DharmaStorageException

Returns
A TableFields object. Throws DharmaStorageException if there is an error.

Arguments
IN int noOfFields
A count of the number of fields in the array

IN Object tablefields
The array of TableField objects

Description
Constructs a TableFields array of size fieldCount and loads the array with the objects
in the tablefields argument.

6.1.7.2 getNth
Returns the Nth element of the array as a TableField Object. Index starts from 0.

Syntax
public TableField

getNth(int index) throws DharmaStorageException

Returns
A TableField object. Throws DharmaStorageException if there is an error.

Arguments
IN int index
The element of the array to return.
6-32 Dharma Systems Inc

Java Stubs Storage Interface Reference
Description
Returns the Nth element of the TableFields array as a TableField object.

6.1.8 IndexField
This class holds information describing a field in an index.

Definition
public class IndexField

Members
short m_fieldID
The id of the index field.

int m_sortOrder
Ascending or descending index sort order.

short m_tableFieldID
The id of the corresponding field in the table.

short m_typeID
The data type of the field.

String m_fieldName
The name of the field.

Methods

6.1.8.1 IndexField
Constructs an IndexField.

Syntax
public

IndexField(short fieldID, short typeID, int sortOrder,

 short tableFieldID, String fieldName)

 throws DharmaStorageException

Returns
A IndexField object. Throws DharmaStorageException if there is an error.

Arguments
IN short fieldID
Id of the field.

IN short typeID
Data type of the field.
Dharma Systems Inc 6-33

User Guide
IN int sortOrder
Ascending or descending index sort order

IN short tableFieldID
The id of the corresponding field in the table.

IN String fieldName
Name of the field.

Description
Constructs an IndexField object.

6.1.8.2 getFieldID
 Returns the id of the field.

Syntax
public short

getFieldID() throws DharmaStorageException

Returns
A short value representing the field id.

Arguments
None

Description
Returns a short value representing the id of the index field.

6.1.8.3 setFieldID
Sets the id of the field.

Syntax
public void

setFieldID(short fieldID) throws DharmaStorageException

Returns
None

Arguments
IN short fieldID
ID for the field.
6-34 Dharma Systems Inc

Java Stubs Storage Interface Reference
Description
Sets the field id.

6.1.8.4 getTypeID
Returns the data type of the field.

Syntax
public short

getTypeID() throws DharmaStorageException

Returns
A short value representing the data type of the field.

Arguments
None

Description
Returns a short value representing the data type of the index field.

6.1.8.5 setTypeID
Sets the type id of the field.

Syntax
public void

setTypeID(short typeID) throws DharmaStorageException

Returns
None

Arguments
IN short typeID
Data type for the field.

Description
Sets the data type of the index field.

6.1.8.6 getSortOrder
Returns the sort order of the field.
Dharma Systems Inc 6-35

User Guide
Syntax
public int

getSortOrder() throws DharmaStorageException

Returns
An integer value representing the sort order of the field.

Arguments
None

Description
Returns a char value representing the sort order of the index field as specified in the
index create statement. StorageCodes.ASCENDING signifies an ascending sort
order, StorageCodes.DESCENDING signifies a descending sort order.

6.1.8.7 setSortOrder
Sets the sort order of the field.

Syntax
public void

setShortOrder(int sortOrder) throws DharmaStorageException

Returns
None

Arguments
IN short sortOrder
Ascending or descending sort order for the field.

Description
Sets a char value representing the sort order of the index field as specified in the index
create statement. StorageCodes.ASCENDING signifies an ascending sort order, Stor-
ageCodes.DESCENDING signifies a descending sort order.

6.1.8.8 getTableFieldID
Returns the id of the corresponding table field.

Syntax
public short

getTableFieldID() throws DharmaStorageException
6-36 Dharma Systems Inc

Java Stubs Storage Interface Reference
Returns
A short value representing the id of the corresponding table field.

Arguments
None

Description
Gets a short value representing the id of the field in the table corresponding to the
index field.

6.1.8.9 setTableFieldID
Sets the id of the corresponding table field.

Syntax
public void

setTableFieldID(short tableFieldID)

 throws DharmaStorageException

Returns
None

Arguments
IN short tableFieldID

Description
Sets a short value representing the id of the field in the table corresponding to the
index field.

6.1.8.10 getFieldName
Returns the name field.

Syntax
public String

getTableFieldID() throws DharmaStorageException

Returns
A String object containing the name of the field.

Arguments
None
Dharma Systems Inc 6-37

User Guide
Description
Gets a String value representing the name of the field in the index.

6.1.8.11 setFieldName
Sets the name of the field.

Syntax
public void

setFieldName(String fieldName)

 throws DharmaStorageException

Returns
None

Arguments
IN String fieldName
Name of the field.

Description
Sets a String value representing the name of the field in the index.

6.1.9 IndexFields
This class holds an array of IndexField. The SQL Engine passes an IndexField object
to the storage system when it calls StorageManagerHandle.createIndex() to create an
index.

Definition
public class IndexFields extends DharmaArray

Members
None

Methods

6.1.9.1 IndexFields
Constructs an IndexFields array.

Syntax
public

IndexFields(int noOfFields,Object indexfields[])
6-38 Dharma Systems Inc

Java Stubs Storage Interface Reference
 throws DharmaStorageException;

Returns
A IndexFields object. Throws DharmaStorageException if there is an error.

Arguments
IN int noOfFields
A count of the number of fields in the array

IN Object indexfields
The array of IndexField objects

Description
Constructs a IndexFields array of size fieldCount and loads the array with the Objects
passed in the indexfields argument.

6.1.9.2 getNth
Returns the Nth element of the array as an IndexField Object. Index starts from 0.

Syntax
public IndexField

getNth(int index) throws DharmaStorageException

Returns
An IndexField object. Throws DharmaStorageException if there is an error.

Arguments
IN int index
The element of the array to return.

Description
Gets a Nth element of the IndexFields array as specified by the index argument and
returns it as an IndexField object.

6.1.10 DharmaLongVarCharData
DharmaLongVarCharData is a utility class used as either input or return type for the
putLongVarCharData() and getLongVarCharData() methods of the LongDataHandle
class. This is a wrapper class to hold the long varchar data, null information and the
length of the data. An object of this class is passed as input to the LongDataHan-
dle.putLongVarCharData() call. LongDataHandle.getLongVarCharData() returns an
Object of type DharmaLongVarCharData.
Dharma Systems Inc 6-39

User Guide
 Definition
public class DharmaLongVarCharData

Members
char m_data[]
An array of characters that holds the long varchar data.

int m_length
Length of the data.

int m_remainingLength
Length of the remaining data in the field. Used only while getting the data from the
long data field.

boolean m_isNull
Is data null.

6.1.10.1 DharmaLongVarCharData
This is the default constructor of DharmaLongVarCharData.

Syntax
public

DharmaLongVarChar() throws DharmaStorageException

Returns
None

Arguments
None

Description
Constructs a default DharmaLongVarCharData.

6.1.10.2 DharmaLongVarCharData
This is a constructor of DharmaLongVarCharData.

Syntax
public

DharmaLongVarChar(char data[],

 int length,

 int remainingLength,

 boolean isNull)

 throws DharmaStorageException
6-40 Dharma Systems Inc

Java Stubs Storage Interface Reference
Returns
None

Arguments
IN char data[]
An array of characters as sent by the engine.

IN int length
Length of the data in the character array

IN int remainingLength
Length of the remaining data in the field. Used only while getting the data from the
long data field.

IN boolean isNull
boolean value that is true if the data is null

Description
Constructs a DharmaLongVarCharData with long varchar data, null information and
length of the data as input.

6.1.10.3 isNull
Returns true if the field is null.

Syntax
public boolean isNull() throws DharmaStorageException

Returns
A boolean value true if the data is null.

Arguments
None

Description
Returns true if the field is null.

6.1.10.4 setNull
Sets the data of the field to null.

Syntax
public void setNull() throws DharmaStorageExcepception
Dharma Systems Inc 6-41

User Guide
Returns
None

Arguments
None

Description
sets the boolean m_isNull to true.

6.1.10.5 setNotNull
Sets the boolean m_isNull to false.

Syntax
public void setNotNull() throws DharmaStorageExcepception

Returns
None

Arguments
None

Description
This sets m_isNull to false.

6.1.10.6 getLength
Gets the length of the field

Syntax
public int

getLength() throws DharmaStorageException

Returns
An int value representing the length of the data.

Arguments
None

Description
This function gets the length of the field.
6-42 Dharma Systems Inc

Java Stubs Storage Interface Reference

6.1.10.7 getRemainingLength
Gets the length of the remaining data in the field. Used only while getting the data
from the long data field.

Syntax
public int

getRemainingLength() throws DharmaStorageException

Returns
The length of the remaining data in the field.

Arguments
None

Description
This function gets the length of the remaining data in the field.

6.1.10.8 setLength
Sets the length of the field.

Syntax
public void

setLength(int length) throws DharmaStorageException

Returns
None

Arguments
IN int length
The length of the field.

Description
This function sets the length of the field.

6.1.10.9 getData
Gets the data of the field.

public char[]
Dharma Systems Inc 6-43

User Guide
getData () throws DharmaStorageException

Returns
An array of character array.

Arguments
None

Description
This function gets the data of the field as an array of characters.

6.1.10.10 setData
Sets the data of the field.

Syntax
public void

setData(char[] data) throws DharmaStorageException

Returns
None

Arguments
IN char[] data
The character array data to be set in the field.

Description
This function sets data of the field.

6.1.11 DharmaLongVarBinaryData.
DharmaLongVarBinaryData is a utility class used as either input or return type for the
putLongVarBinaryData() and getLongVarBinaryData() methods of the LongDataHan-
dle class. This is a wrapper class to hold the long varBinary data, null information and
the length of the data. An object of this class is passed as input to the LongDataHan-
dle.putLongVarBinaryData() call. LongDataHandle.getLongVarBinaryData() returns
an Object of type DharmaLongVarBinaryData.

Definition
public class DharmaLongVarBinaryData

Members
byte m_data[]
6-44 Dharma Systems Inc

Java Stubs Storage Interface Reference
An array of characters as sent by the engine.

int m_length
Length of the byte array

int m_remainingLength
Length of the remaining data in the field. Used only while getting the data from
the long data field .

boolean m_isNull
boolean value that is true if the data is null

6.1.11.1 DharmaLongVarBinaryData
This is the default constructor of DharmaLongVarBinaryData.

Syntax
public

DharmaLongVarBinaryData() throws DharmaStorageException

Returns
None

Arguments
None

Description
Constructs a default DharmaLongVarBinaryData which sets the m_isNull boolean to
true.

6.1.11.2 DharmaLongVarBinaryData
This is a constructor of DharmaLongVarBinaryData.

Syntax
public

DharmaLongVarBinaryData(byte data[],

 int length,

 int remainingLength,

 boolean isNull)

 throws DharmaStorageException

Returns
None
Dharma Systems Inc 6-45

User Guide
Arguments
IN byte data[]
An array of bytes as sent by the engine.

IN int length
Length of the byte array

IN int remainingLength
Length of the remaining data in the field. Used only while getting the data from the
long data field.

IN boolean isNull
boolean value that is true if the data is null.

Description
Constructs a DharmaLongVarBinaryData with long varbinary data, null information
and length of the data as input.

6.1.11.3 isNull
Returns true if the field is null.

Syntax
public boolean isNull() throws DharmaStorageException

Returns
A boolean value true if the data is null.

Arguments
None

Description
Returns true if the field is null.

6.1.11.4 setNull
Sets the boolean m_isNull to true.

Syntax
public void setNull() throws DharmaStorageExcepception

Returns
None
6-46 Dharma Systems Inc

Java Stubs Storage Interface Reference
Arguments
None

Description
Sets the boolean m_isNull to true.

6.1.11.5 setNotNull
Sets the boolean m_isNull to false.

Syntax
public void setNotNull() throws DharmaStorageExcepception

Returns
None

Arguments
None

Description
This sets m_isNull to false.

6.1.11.6 getLength
Gets the length of the field.

Syntax
public int

getLength() throws DharmaStorageException

Returns
Length of the field.

Arguments
None

Description
This function gets the length of the field.
Dharma Systems Inc 6-47

User Guide
6.1.11.7 getRemainingLength
Gets the length of the remaining data in the field. Used only while getting the data

from the long data field.

Syntax
public int

getRemainingLength() throws DharmaStorageException

Returns
The length of the remaining data in the field.

Arguments
None

Description
This function gets the length of the remaining data in the field.

6.1.11.8 setLength
Sets the length of the field.

Syntax
public void

setLength(int length) throws DharmaStorageException

Returns
None

Arguments
IN int length
The length of the field.

Description
This function sets the length of the field.

6.1.11.9 getData
Gets the data of the field.

Syntax
public bytes[]
6-48 Dharma Systems Inc

Java Stubs Storage Interface Reference
getData () throws DharmaStorageException

Returns
An array of bytes.

Arguments
None.

Description
This function gets the data of the field as an array of bytes.

6.1.11.10 setData
Sets the data of the field.

Syntax
public void

setData(byte[] data) throws DharmaStorageException

Returns
None

Arguments
IN byte[] data
The byte array data to be set in the field.

Description
This function sets data of the field.

6.1.12 ProcedureColumn
The procedureColumn represents IN , OUT and INOUT arguments infomation about
the procedure/function .In case of functions it gives information about the return
value & in case of procedures it gives information about result set.

Definition
public class ProcedureColumn

Members
short m_paramID
Contains the Parameter identifier.

int m_dataType
Dharma Systems Inc 6-49

User Guide
This field represents data type of the field.

String m_fieldName
This field represents name of the column.

int columnType
An integer value that indicates IN, OUT, IN_OUT & RESULT.

boolean isNullable
A boolean value that indicates wether the column can be nullable.

short m_maxLength
Specifies maximum length.

short m_width
Specifies the width for numeric type.

short m_scale
Specifies the no of digits to the right of the decimalpoint for numeric type.

short defltType
Specifies the default type of the column.

String defltValue
Specifies the default value of the column.

Methods

6.1.12.1 ProcedureColumn
Returns the parameter ID.

Syntax
public

ProcedureColumn()throws DharmaStorageException

Returns
None.

Arguments
None.

Description
This is the constructor of ProcedureColumn.This will set isNullable to false.

6.1.12.2 getParamID
Returns the parameter ID.
6-50 Dharma Systems Inc

Java Stubs Storage Interface Reference
Syntax
public short

getParamID ()throws DharmaStorageException

Returns
Parameter identifier.

Arguments
None.

Description
This method returns the parameterID.

6.1.12.3 setParamID
Sets the parameter ID.

Syntax
public void

setParamID (short paramID) throws DharmaStorageException

Returns
None. Throws DharmaStorageException.

Arguments
IN short paramID.

Description
This method sets the parameterID.

6.1.12.4 getDataType
Gets the datatype of the parameter.

Syntax
public int

getDataType() throws DharmaStorageException

Returns
An int value that represents the datatype of the procedure column.Throws Dharma
StorageException.
Dharma Systems Inc 6-51

User Guide
Arguments
None.

Description
Gives the datatype of the parameter.

6.1.12.5 setDataType
Sets the datatype.

Syntax
public void

setDataType(int dataType) throws DharmaStorageException

Returns
None. Throws DharmaStorageException.

Arguments
IN int dataType.

Description
This method sets the datatype.

6.1.12.6 getFieldName
Gets the field name of the procedureColumn.

Syntax
public String

getFieldName()throws DharmaStorageException

Returns
Field name. Throws DharmaStorageException.

Arguments
None.

Description
This method gets the field name.
6-52 Dharma Systems Inc

Java Stubs Storage Interface Reference
6.1.12.7 setFieldName
Sets the field name of the procedureColumn.

Syntax
public void

setFieldName(String name)throws DharmaStorageException

Returns
None. Throws DharmaStorageException

Arguments
IN String name.

Description
This method gets the field name.

6.1.12.8 getColumnType
Gets the type of the procedureColumn.

Syntax
public int

getColumType()throws DharmaStorageException

Returns
Type of the column. Throws DharmaStorageException.

Arguments
None.

Description
This method gets the column type.

6.1.12.9 setColumnType
Sets the type of the procedureColumn.

Syntax
public void

setColumnType(short colType)throws DharmaStorageException
Dharma Systems Inc 6-53

User Guide
Returns
None. Throws DharmaStorageException.

Arguments
IN short colType.

Description
This method sets the column type.

6.1.12.10 getNullable
Gets the nullable information of the procedureColumn.

Syntax
public boolean

getNullable()throws DharmaStorageException

Returns
A true value if the column is nullable. Throws DharmaStorageException

Arguments
None

Description
This method gets the whether the column is nullable.

6.1.12.11 setNullable
Sets the nullable information of the procedureColumn.

Syntax
public void

setNullable()throws DharmaStorageException

Returns
None. Throws DharmaStorageException

Arguments
None.

Description
This method sets the column to be nullable.
6-54 Dharma Systems Inc

Java Stubs Storage Interface Reference
6.1.12.12 getMaxLength
Gets the maximum length of numeric types.

Syntax
public short

getMaxLength()throws DharmaStorageException

Returns
Returns the max length for numeric type. Throws DharmaStorageException.

Arguments
None.

Description
This method gets the max length for numeric type.

6.1.12.13 setMaxLength
Sets the maximum length of numeric types.

Syntax
public void

setMaxLength (short maxLength)throws DharmaStorageException

Returns
None. Throws DharmaStorageException

Arguments
IN short maxLength.
Maxlength to be set.

Description
This method the max length for numeric type.

6.1.12.14 getWidth
Gets the maximum no of digits for numeric types.

Syntax
public short
Dharma Systems Inc 6-55

User Guide
getWidth()throws DharmaStorageException

Returns
Returns the max width for numeric type. Throws DharmaStorageException.

Arguments
None.

Description
This method gets the max width for numeric type.

6.1.12.15 setWidth
Sets the maximum no of digits for numeric types.

Syntax
public void

setWidth(short width)throws DharmaStorageException

Returns
Sets the max width for numeric type. Throws DharmaStorageException

Arguments
IN short width
Width to be set.

Description
This method sets the max width for numeric type.

6.1.12.16 getScale
Gets the maximum number of digits that can be there to the right of the decimal for
numeric types.

Syntax
public short

getScale()throws DharmaStorageException

Returns
Returns number of digits that can be there to the right of the decimal for numeric
types. Throws DharmaStorageException
6-56 Dharma Systems Inc

Java Stubs Storage Interface Reference
Arguments
None.

Description
This method gets the scale for numeric type.

6.1.12.17 setScale
Sets the maximum no of digits that can be there to the right of the decimal for numeric
types.

Syntax
public void

setScale(short scale) throws DharmaStorageException

Returns
None.

Arguments
IN short scale
The value of scale that is to be set.

Description
This method sets scale for numeric type.

6.1.12.18 getDefaultType
Gets the default type for the procedure column.

Syntax
public short

getDefaultType() throws DharmaStorageException

Returns
Returns the default type for the procedure column Throws DharmaStorageException

Arguments
None

Description
Gets the default type for the procedure column.
Dharma Systems Inc 6-57

User Guide
6.1.12.19 setDefaultType
Sets the default type for the procedure column.

Syntax
public void

setDefaultType (short type) throws DharmaStorageException

Returns
None.

Arguments
IN short type
The default type to be set.

Description
Sets the default type for the procedure column.

6.1.12.20 getDefaultValue
Gets the default value for the procedure column.

Syntax
public String

getDefaultValue() throws DharmaStorageException

Returns
Gets the default value for the procedure column Throws DharmaStorageException

Arguments
None.

Description
Gets the default value for the procedure column.

6.1.12.21 setDefaultValue
Sets the default value for the procedure column.

Syntax
public void
6-58 Dharma Systems Inc

Java Stubs Storage Interface Reference
setDefaultValue (String value) throws DharmaStorageException

Returns
None.

Arguments
None.

Description
Sets the default value for the procedure column.

6.1.13 ProcedureColumns
The procedureColumns class represents an array of Procedurecolumn.

Definition
public class ProcedureColumns extends ProcedureColumns

Methods

6.1.13.1 ProcedureColumns
Constructor for ProcedureColumns that will call DharmaArray Classes constructor.

Syntax
public

ProcedureColumns(int noOfFields , Object ProceduresColumn [])

 throws DharmaStorageException

Returns
None

Arguments
IN int noOfFields
Number of fields procedure has.

IN Object procedureColumn[]
An array of procedureColumn.

Description
Constructor for ProcedureColumns that will call DharmaArray Classes constructor.
Dharma Systems Inc 6-59

User Guide
6.1.13.2 getNth
Constructor for ProcedureColumns that will call DharmaArray Classes constructor.

Syntax
public ProcedureColumn

getNth(int index) throws DharmaStorageException

Returns
ProcedureColumn object existing at index Throws DharmaStorageException

Arguments
IN int index

Description
Gets ProcedureColumn from the index.

6.1.13.3 getSize
Gives the size of ProcedureColumns

Syntax
public int

getSize() throws DharmaStorageException

Returns
None.Throws DharmaStorageException.

Arguments
None.

Description
Gets ProcedureColumn.

6.1.14 ProcedureMetaData
This class contains all the information of a procedure/function.

Definition
public class ProcedureMetaData

Members
int procedureID
6-60 Dharma Systems Inc

Java Stubs Storage Interface Reference
procedure identifier.

String name
Function name as known to SQL.

boolean procedureIsConstant
Is it a constant function.

short procedureMinParamCount
Minimum number of arguments.

short procedureMaxParamCount
Maximum number of arguments.

boolean procedureHasRetVal
Does the procedure have a return value.

ProcedureColumns parameterInformation
Procedure/function parameter descriptions.

ProcedureColumns resultSetInformation
Procedure/function resultset or return value.

String ownerName
Name of the owner.

boolean isResultSet
Used by procedures.

ProcedureColumn returnValue
Return value information for functions.

6.1.14.1 getOwnerName
Gets the name of the owner.

Syntax
public String

getOwnerName() throws DharmaStorageException

Returns
Returns the name of the owner.

Arguments
IN String userName
Name of the user.

Description
This function returns name of the owner.
Dharma Systems Inc 6-61

User Guide
6.1.14.2 setOwnerName
This function sets the name of the owner.

Syntax
public void

setOwnerName(String name) throws DharmaStorageException

Returns
None.

Arguments
IN String name
Name of the owner.

Description
Sets the Name of the owner.

6.1.14.3 getProcedureHasResultSet
Returns true if the procedure has a result set.

Syntax
public boolean

getProcedureHasResultSet() throws DharmaStorageException

Returns
boolean value indicating whether isResultSet is true.

Arguments
None.

Description
Returns true if the procedure has a result set.

6.1.14.4 setProcedureHasResultSet
Sets boolean isResultSet to true.

Syntax
public void

setProcedureHasResultSet() throws DharmaStorageException
6-62 Dharma Systems Inc

Java Stubs Storage Interface Reference
Returns
None. Throws DharmaStorageException

Arguments
None

Description
Sets boolean isResultSet to true.

6.1.14.5 getReturnValue
Gets the return value information for functions.

Syntax
public ProcedureColumn

getReturnValue() throws DharmaStorageException

Returns
ProcedureColumn Object.Throws DharmaStorageException.

Arguments
 None.

Description
Returns the information about the return value for functions.

6.1.14.6 setReturnValue
Sets return value information for functions.

Syntax
public void

setReturnValue(ProcedureColumn procCol)

 throws DharmaStorageException

Returns
None.Throws DharmaStorageException.

Arguments
IN ProcedureColumn procCol
Information of the return value.
Dharma Systems Inc 6-63

User Guide
Description
Sets information of the return value for functions.

6.1.14.7 getParameterInformation
Gets the parameter information.

Syntax
public ProcedureColumns

getParameterInformation() throws DharmaStorageException

Returns
ProcedureColumns Object. Throws DharmaStorageException.

Arguments
None.

Description
Returns the parameters information.

6.1.14.8 setParameterInformation
Sets the parameters information.

Syntax
public void

setParameterInformation(ProcedureColumns paramInfo)

 throws DharmaStorageException

Returns
None. Throws DharmaStorageException.

Arguments
IN ProcedureColumns paramInfo
Information of the parameter.

Description
Sets the parameters information.
6-64 Dharma Systems Inc

Java Stubs Storage Interface Reference
6.1.14.9 setResultSetInformation
Sets the resultset information.

Syntax
public void

setResultSetInformation(ProcedureColumns resultset)

 throws DharmaStorageException

Returns
None. Throws DharmaStorageException.

Arguments
IN ProcedureColumns resultset
Information of the resultset in case of procedures.

Description
Sets the resultset information.

6.1.14.10 getResultSetInformation
Gets the resultset information for a procedure.

Syntax
public ProcedureColumns

getResultSetInformation() throws DharmaStorageException

Returns
ProcedureColumns Object. Throws DharmaStorageException.

Arguments
None

Description
Returns the resultset information.

6.1.14.11 getProcedureID
Gets the procedure identifier.

Syntax
public int

getProcedureID() throws DharmaStorageException
Dharma Systems Inc 6-65

User Guide
Returns
An integer value that represents procedureID.Throws DharmaStorageException.

Arguments
None.

Description
Returns the procedure identifier.

6.1.14.12 setProcedureID
Sets the procedure identifier.

Syntax
public void

setProcedureID(int ID) throws DharmaStorageException

Returns
None. Throws DharmaStorageException.

Arguments
IN int ID
An integer representing the procedure identifier.

Description
Sets the procedure identifier.

6.1.14.13 setProcedureName
Sets the procedure name.

Syntax
public void

setProcedureName(String procedureName)

 throws DharmaStorageException

Returns
None. Throws DharmaStorageException.

Arguments
String procedureName
A String representing the procedure name.
6-66 Dharma Systems Inc

Java Stubs Storage Interface Reference
Description
Sets the procedure name.

6.1.14.14 getProcedureName
Gets the procedure name.

Syntax
public String

getProcedureName() throws DharmaStorageException

Returns
Procedure Name.Throws DharmaStorageException.

Arguments
None.

Description
Gets the procedure name.

6.1.14.15 setConstant
Sets boolean procedureIsConstant to true.

Syntax
public void

setConstant() throws DharmaStorageException

Returns
None. Throws DharmaStorageException

Arguments
None.

Description
Sets procedureIsConstant to true.

6.1.14.16 setProcedureMinParamCount
Sets the minimum no of parameters.
Dharma Systems Inc 6-67

User Guide
Syntax
public void

setProcedureMinParamCount(short minParamCount)

 throws DharmaStorageException

Returns
None. Throws DharmaStorageException

Arguments
IN short minParamCount
A short value representing the minimum number of parameters.

Description
Sets the minimum no of parameters.

6.1.14.17 setProcedureMaxParamCount
Sets the maximum number of parameters.

Syntax
public void

setProcedureMaxParamCount(short maxParamCount)

 throws DharmaStorageException

Returns
None. Throws DharmaStorageException.

Arguments
IN short maxParamCount
A short value representing the maximum number of parameters.

Description
Sets the maximum number of parameters.

6.1.14.18 setProcedureHasReturnValue
Sets the procedureHasRetval to true.

Syntax
public void

setProcedureHasReturnValue() throws DharmaStorageException
6-68 Dharma Systems Inc

Java Stubs Storage Interface Reference
Returns
None. Throws DharmaStorageException.

Arguments
None.

Description
Sets the procedureHasRetval to true.

6.2 TABLE INTERFACES

6.2.1 TableHandle
The TableHandle class is the equivalent of tpl_hdl_t in the C++ stubs. It is created
using the getTableHandle method in the StorageManagerHandle class. The Table-
Handle class is used to manipulate a table. It provides the basic functionality of open-
ing, and closing a table, as well as the basic operations of inserting a record, fetching a
record, updating a record, and deleting a record.

Definition
public class TableHandle

Members
None

Methods

6.2.1.1 insert
Inserts a record into a table.

Syntax
public RecordID

insert(FieldValues fieldValues) throws DharmaStorageException

 Returns
The RecordID of the inserted record. Throws DharmaStorageException if there is an
error.

Arguments
IN FieldValues fieldValues
The values for the fields in the record to be inserted
Dharma Systems Inc 6-69

User Guide
Description
TableHandle.insert is used to insert a record into a table. fieldValues contains the list
of field values for the record to be inserted. There is one field value for each field that
makes up the table. The fields are ordered in the list by their field id.

The storage system must assign a record identifier (recordID) to the record that is
inserted. This recordID is returned from TableHandle.insert. On output, the recordID
must contain a recordID value that can be used by the SQL engine to relocate the
record that was inserted. The SQL engine may use the recordID on subsequent calls to
other functions to identify the record that was inserted.

Note that the SQL engine imposes no requirement on a storage manager relative to the
order of records within a table.

After calling TableHandle.insert, the SQL engine will call StorageManagerHan-
dle.getStorageManagerInfo with the StorageCodes.IX_UPD_REQUIRED flag:

- If TRUE is returned, then the SQL engine will update any corresponding
indexes appropriately by calling IndexHandle.insert.

- If FALSE is returned, then the SQL engine assumes that the storage system
will update the corresponding indexes during the execution of TableHan-
dle.insert. If inserting the record into the associated indexes would result in a
duplicate index key value for a unique index, then the record should not be
stored in the table or the index, and an error returned.

6.2.1.2 getRecord
Fetches a specified record from a table.

Syntax
public DharmaRecord

getRecord (RecordID recordID, int fetchHint,

 FieldValues refFields)

 throws DharmaStorageException

Returns
A DharmaRecord Object containing the retrieved record. Throws DharmaStorageEx-
ception if there is an error.

Arguments
IN RecordID recordID
ID of the record to retrieve.

IN int fetchHint
Indicates if the record is being fetched in the context of a SQL statement which only
performs read operations or if it is being executed in the context of a SQL statement
that could perform writes. fetchHint will be one of the following values:
6-70 Dharma Systems Inc

Java Stubs Storage Interface Reference
• StorageCodes.TPL_FH_READ: The record being fetched is not a candidate for
being updated in the context of the current SQL statement.

• StorageCodes.TPL_FH_WRITE: The record being fetched is a candidate for
being updated in the context of the current SQL statement.

Note that fetchHint is in fact just a hint. It is strictly relative to the current SQL state-
ment. Even if fetchHint is set to StorageCodes.TPL_FH_READ, it does not imply
that the record being fetched was not already updated earlier in the transaction, or that
it will not be updated at some future point during the execution of the transac-
tion.

IN FieldValues refFields
List of fields to be returned (only fields required by the query are fetched).

Description
TableHandle.getRecord fetches a record from a table. recordID identifies the record
within the table that is to be fetched. refFields is a pointer to a list of fields. refFields
may contain entries for all of the fields within the record, or it may contain entries for
only a subset of fields.

Using FieldValue.fieldID, the storage system should extract the appropriate field value
from the retrieved record and store it in the DharmaRecord.

6.2.1.3 update
Updates a record in a table.

Syntax
public void

update (RecordID recordID, FieldValues fieldValues)

 throws DharmaStorageException

Returns
None

Arguments
IN RecordID recordID
The ID of the record to update.

IN FieldValues fieldValues
The values for the fields in the record to be updated

Description
TableHandle.update updates a record in a table. recordID identifies the record
within the table that is to be updated. fieldValues contains a list of the fields to
be updated and the new data for each field. Note that only fields to be updated
are contained in the list.
Dharma Systems Inc 6-71

User Guide
For each field that is to be updated the value of that field is replaced by the
value that was extracted from fieldValues.

After calling TableHandle.update, the SQL engine will call StorageManager-
Handle.getStorageManagerInfo with the StorageCodes.IX_UPD_REQUIRED
flag:

- If TRUE is returned, then the SQL engine will update any corresponding
indexes appropriately.

- If FALSE is returned, then the SQL engine assumes that the storage system
will update the corresponding indexes during the execution of TableHan-
dle.update.

6.2.1.4 delete
Deletes a record from a table.

Syntax
public void

delete(RecordID recordID) throws DharmaStorageException

Returns
None

Arguments
IN RecordID recordID
The ID of the record to be deleted.

Description
TableHandle.delete deletes a record in a table. recordID identifies the record within
the table that is to be deleted.

After calling TableHandle.delete, the SQL engine will call StorageManagerHan-
dle.getStorageManagerInfo with the StorageCodes.IX_UPD_REQUIRED flag:

- If TRUE is returned, then the SQL engine will update any corresponding
indexes appropriately.

- If FALSE is returned, then the SQL engine assumes that the storage system
will update the corresponding indexes during the execution of TableHan-
dle.delete.

6.2.1.5 getCardinality
Gets the cardinality of the table.
6-72 Dharma Systems Inc

Java Stubs Storage Interface Reference
Syntax
public int

getCardinality() throws DharmaStorageException

Returns
Cardinality of the table.

Arguments
None.

Description
This method returns the no of rows in the table.

6.2.1.6 close
Close the table handle.

Syntax
public void

close() throws DharmaStorageException

Returns
None

Arguments
None

Description
Closes the table that was opened for scanning within a storage manager.

6.2.2 TableScanHandle
The TableScanHandle class is the equivalent of the tpl_scan_t class in C++. It is cre-
ated using the getTableScanHandle method in the StorageManagerHandle class. The
TableScanHandle class is used to scan the records that are contained within a specified
table. It provides the basic operation of fetching all of the records from the table one
record at a time and the basic functionality of closing a scan on a table.

Definition
public class TableScanHandle
Dharma Systems Inc 6-73

User Guide
Members
None

Methods

6.2.2.1 getNextRecord
Fetches the next record in a table scan.

Syntax
public DharmaRecord

getNextRecord (FieldValues refFields)

 throws DharmaStorageException

Returns
DharmaRecord object containing the field values fetched from the table record that
meets the criteria specified in operator and searchValues, and the RecordID for the
corresponding table record.

Arguments
IN FieldValues refFields
A FieldValues object in which the SQL engine lists the fields for which values are to
be fetched from the next table record.

Description
TableScanHandle.getNextRecord fetches the next record from a table scan. When a
table scan is opened, the scan is positioned before the first record of the table. Each
call to TableScanHandle.getNextRecord, results in the scan being moved to the next
record of the table, and the field values from the record being returned. With each call
to TableScanHandle.getNextRecord, the storage manager:

- Returns values to non-null members of the refFields array

- Returns the RecordID for the record

- Moves the scan to the next record of the table

refFields identifies fields within the retrieved table record whose values are to be
returned. If refFields has a size of 0, it indicates that no field values are to be returned
for the table record (in which case it is only the RecordID that is required by the SQL
engine. If refFields has a non-zero size, then a value must be returned for each field
specified in refFields.

6.2.2.2 close
Closes TableScanHandle.
6-74 Dharma Systems Inc

Java Stubs Storage Interface Reference
Syntax
public void

close () throws DharmaStorageException

Returns
None

Arguments
None

Description
Closes an index that was opened for scanning within a storage manager.

6.3 INDEX INTERFACES

6.3.1 IndexHandle
The IndexHandle class is the equivalent of the ix_hdl_t class in the C++ stubs. It is
created using the getIndexHandle method of the StorageManagerHandle class. This
class is used to manipulate an index. It provides the functionality of opening and clos-
ing an index, as well as inserting, appending and deleting records in an index.

Definition
public class IndexHandle

Members
None

Methods

6.3.1.1 insert
Inserts a record into an index.

Syntax
public void

insert (FieldValues indexValues, RecordID recordID)

 throws DharmaStorageException

Returns
None

Arguments
IN FieldValues indexValues
Dharma Systems Inc 6-75

User Guide
The list of index key component values for the record that is to be inserted into the
index. A value exists for each component in the index.

IN RecordID recordID
The RecordID of the table record for which this index entry is being inserted.

Description
IndexHandle.insert is used by the SQL engine to insert an index record into an index.
indexValues contains the list of values, one for each component of the index. recordID
identifies the record within the table associated with this index that the index key com-
ponent values correspond to. The index key component values and the recordID val-
ues taken together form an index record.

When inserting the index record into the index, the record must logically be stored
according to the criteria that was established when the index was created. If duplicate
records are not allowed, the storage system must compare the key component values
of the index record to the key component values of records already contained within
the index. If a record exists with the same values, then the storage system should
return an error.

Note In the case where the storage system determines a duplicate record exists,
the storage system is also responsible for removing the table record already
inserted during execution of the TableHandle.insert method. The SQL engine
does not call TableHandle.delete to enforce the constraint against duplicate
records. The storage system should remove the table record during its processing
of the StorageEnvironment.rollbackTransaction method.

Within indexValues there is one component value for each index key component that
makes up the index. The details of how an index record is stored within an index is
storage manager specific, but it must be stored in such a way that the index component
key values, along with the associated RecordID, can be retrieved as a unit via the
IndexScanHandle.getNextRecord method.

Before calling IndexHandle.insert, the SQL engine will call StorageManagerHan-
dle.getStorageManagerInfo with the StorageCodes.IX_UPD_REQUIRED flag. If
TRUE is returned, then the SQL engine will execute IndexHandle.insert. If FALSE is
returned, then the SQL engine will not call IndexHandle.insert. Instead it will assume
that the storage system will update the corresponding indexes during the execution of
the TableHandle.insert and TableHandle.update methods.

6.3.1.2 delete
Deletes a record from an index.

Syntax
public void

delete (FieldValues indexValues, RecordID recordID)

 throws DharmaStorageException
6-76 Dharma Systems Inc

Java Stubs Storage Interface Reference
Returns
None

Arguments
IN FieldValues indexValues
The list of index key component values for the record that is to be deleted from the
index. A value exists for each component in the index.

IN RecordID recordID
The RecordID of the table record for which this index entry is being deleted.

Description
IndexHandle.delete is used by the SQL engine to delete an index record from an
index. indexValues contains the list of index key component values for the record to
be deleted. recordID identifies the record within the table associated with this index
that the index key component values correspond to. The index key component values
and the tid values taken together form an index record. Within indexValues there is
one component value for each index key component that makes up the index. The
record to be deleted from the index is the one whose component key values match the
ones provided in indexValues, and whose recordID value matches the value provided
by recordID.

Before calling IndexHandle.delete, the SQL engine will call StorageManagerHan-
dle.getStorageManagerInfo with the StorageCodes.IX_UPD_REQUIRED flag. If
TRUE is returned, then the SQL engine will execute IndexHandle.delete. If FALSE is
returned, then the SQL engine will not call IndexHandle.delete. Instead it will assume
that the storage system will update the corresponding indexes during the execution of
the TableHandle.delete function.

6.3.1.3 getSelectivity
Gets the selectivity for an index.

Syntax
public double

getSelectivity (FieldValues fieldValues, int oper)

 throws DharmaStorageException

Returns
None

Arguments
IN FieldValues fieldValues
The list of field values that contains the index information.
Dharma Systems Inc 6-77

User Guide
Description
Returns the selectivity of the index.

6.3.1.4 close
Closes an IndexHandle.

Syntax
public void

close() throws DharmaStorageException

Returns
None

Arguments
None

Description
Closes an index within a storage manager.

6.3.2 IndexScanHandle
The IndexScanHandle class is the equivalent of ix_scan_t in the C++ stubs. It is cre-
ated using the getIndexScanHandle method in the StorageManagerHandle class. The
IndexScanHandle class is used to scan the records that are contained within a speci-
fied index. It provides the basic operation of fetching selected records from the index
one record at a time and the basic functionality of closing a scan on an index.

Definition
public class IndexScanHandle

Members
None

Methods

6.3.2.1 getNextRecord
Fetches the next record in an index scan.

Syntax
public DharmaRecord

getNextRecord (int operator, FieldValues searchValues,

 FieldValues refFields) throws DharmaStorageException
6-78 Dharma Systems Inc

Java Stubs Storage Interface Reference
Returns
DharmaRecord object containing the field values fetched from the index record that
meets the criteria specified in operator and searchValues, and the RecordID for the
corresponding table record.

Arguments
IN int operator
Indicates the type of scan to perform. The SQL engine supplies the same value
here as on the corresponding call to StorageManagerHandle.getIndexScan-
Handle. It is up to the storage manager to decide whether to process the opera-
tor value during execution of StorageManagerHandle.getIndexScanHandle or
IndexScanHandle.getNextRecord. See Table 5-2: on page 5-37 for a list of the
valid operators and their meanings.

IN FieldValues searchValues
The list of values to use for comparison when searching for an index record. The SQL
engine supplies the same values here as on the corresponding call to StorageManager-
Handle.getIndexScanHandle.

IN FieldValues refFields
A FieldValues object in which the SQL engine lists the fields for which values are to
be fetched from the index record that meets the criteria specified by operator and
SearchValues.

Description
IndexScanHandle.getNextRecord fetches the next record from an index based on the
operator and comparison values stored in searchValues. When an index scan is
opened, the scan is positioned before the first record of the index that matches the
comparison values based on the operator. With each call to IndexScanHandle.getNex-
tRecord, the storage manager:

- Returns values to non-null members of the refFields array

- Returns the RecordID for the record

- Moves the scan to the next record of the index that matches the comparison
criteria

refFields identifies fields within the retrieved index record whose values are to be
returned. If refFields has a size of 0, it indicates that no field values are to be returned
for the index record (in which case it is only the RecordID that is required by the SQL
engine. If refFields has a non-zero size, then a value must be returned for each field
specified in refFields.

The SQL engine may set refFields.fieldID to StorageCodes.INVAL_FLDID rather
than to a valid index key id. This means the storage system indicated it supports the
fetch all fields feature by returning TRUE when the SQL engine called StorageMan-
agerHandle.getStorageManagerInfo with an info_type of Storage-
Dharma Systems Inc 6-79

User Guide
Codes.IX_FETCH_ALL_FIELDS. In that case, the FieldValue represents a field
which is not part of the index, but is a field within the table that the index
being scanned is associated with. (See the following discussion.)

Fetching All Fields Through Index Scans: StorageCodes.IX_FETCH_ALL_FIELDS

A storage system typically returns a subset of the index key component fields and a
record identifier (RecordID) in response to a IndexScanHandle.getNextRecord call. If
the SQL engine needs field values beyond those that make up the index key, then it
specifies the appropriate RecordID when calling TableHandle.getRecord to get the
remaining field values for the row. However, many storage systems, hierarchical sys-
tems in particular, have direct access to all the field values of a row when performing
an index fetch. For cases where the SQL engine needs field values beyond the fields
that make up the index key, a significant performance advantage is possible if all the
field values that are needed are returned in response to IndexScanHandle.getNex-
tRecord rather than just the index key fields. The performance gain occurs because
the TableHandle.getRecord call is eliminated.

The SQL engine determines support for obtaining field values in this manner through
the StorageCodes.IX_FETCH_ALL_FIELDS property. A storage system indicates
support for this method by returning TRUE for the Storage-
Codes.IX_FETCH_ALL_FIELDS info type from StorageManagerHandle.getStor-
ageManagerInfo. The SQL engine identifies all the fields that it needs, whether they
are index keys or not, in the refFields argument of the IndexScanHandle.getNex-
tRecord call. The refFields array has two parts with the index fields listed first. For
index fields, the fieldID member contains the index key identifier. The tableFieldID
contains the field identifier for the field in the corresponding table. The second part of
the array contains table fields that are not included in the index. For such fields the
fieldID member is set to INVAL_FLDID, and the tableFieldID contains the field iden-
tifier for the field in the corresponding table.

The index and table fields to be retrieved can thus be identified by comparing the
tableFieldID member to StorageCodes.INVAL_FLDID. Note that the second part of
the array could be empty if the query refers only to the index key fields.

To process the refFields list, the stub implementation must loop through each element
of the array:

- Use the fieldID member to identify desired index key fields and store their
values in the DharmaRecord or retrieve their values using the tableFieldID,
whichever method is more efficient.

- Use the tableFieldID member to identify desired table fields and store their
values in the DharmaRecord.

The following examples show how values in the data structures used by IndexScan-
Handle.getNextRecord would appear after some specific SQL statements:
6-80 Dharma Systems Inc

Java Stubs Storage Interface Reference
Example 6-1: Eliminating Tuple Scans Using StorageCodes.IX_FETCH_ALL_FIELDS

create table t1(c1 int, c2 int, c3 int, c4 int, c5 int, c6 int)

create index t1_idx on t1(c1, c2 , c3)

insert into t1 values(10, 20, 30, 40, 50, 60)

commit work

select * from t1 where c1 = 10

IndexScanHandle.getNextRecord(

searchValues :

fieldID = 0, tableFieldID = 0, data = 10

refFields :

fieldID = 0, tableFieldID = 0, data = 10

fieldID = 1, tableFieldID = 1, data = 20

fieldID = 2, tableFieldID = 2, data = 30

fieldID = INVAL_FLDID, tableFieldID = 3, data = 40

fieldID = INVAL_FLDID, tableFieldID = 4, data = 50

fieldID = INVAL_FLDID, tableFieldID = 5, data = 60

operator = IXOP_EQ

...

C1 C2 C3 C4 C5 C6

-- -- -- -- -- --

10 20 30 40 50 60

1 record selected

select c1, c2, c5, c6 from t1 where c1 = 10

IndexScanHandle.getNextRecord(

searchValues :

fieldID = 0, tableFieldID = 0, data = 10

refFields :

fieldID = 0, tableFieldID = 0, data = 10

fieldID = 1, tableFieldID = 1, data = 20

fieldID = INVAL_FLDID, tableFieldID = 4, data = 50

fieldID = INVAL_FLDID, tableFieldID = 5, data = 60

operator = IXOP_EQ

...

C1 C2 C5 C6

-- -- -- --

10 20 50 60

1 record selected
Dharma Systems Inc 6-81

User Guide
select c2, c3 from t1

IndexScanHandle.getNextRecord(

searchValues :

fieldID = 0, tableFieldID = 0, data = NULL

fieldID = 1, tableFieldID = 1, data = NULL

fieldID = 2, tableFieldID = 2, data = NULL

refFields :

fieldID = 1, tableFieldID = 1, data = 20

fieldID = 2, tableFieldID = 2, data = 30

operator = IXOP_FIRST

...

C2 C3

-- --

20 30

1 record selected

6.3.2.2 close
Closes an IndexScanHandle.

Syntax
public void

close() throws DharmaStorageException

Returns
None

Arguments
None

Description
Closes an index that was opened for scanning within a storage manager.

6.4 STORAGE SYSTEM INTERFACES

6.4.1 StorageEnvironment
Used to establish a connection with the storage environment.
6-82 Dharma Systems Inc

Java Stubs Storage Interface Reference
Definition
public class StorageEnvironment

Members
None

Methods

6.4.1.1 createStorageEnvironment
This method is used by the SQL engine to get a handle to the storage environment.

Syntax
public static StorageEnvironment

createStorageEnvironment(String databaseName,String

 userName,String password, String dbOptions)

 throws DharmaStorageException

Returns
StorageEnvironment object.

Arguments
IN String databaseName
The name of the database being opened.

IN String userName
The name of the user as provided on the connect call..

IN String password
The password as provided on the connect call..

IN String dbOptions
The implementer specified connection information as provided by the user.

Description
The StorageEnvironment.createStorageEnvironment method is used to initialize a
connection by opening a database and initializing the storage manager environment.
StorageEnvironment.createStorageEnvironment is only called when the SQL engine
starts and it is the only function called at startup. Implementations must perform
whatever specific functions are required to initialize a connection to the proprietary
storage system. Note that the database name, user name, password and dboptions
arguments are opaque strings to the SQL engine. No attempt is made by the SQL
engine to verify the format or validity of any of these strings. The storage environment
should authenticate the database name, user name, password and implementer defined
connection options according to the specific requirements of the storage
environment.
Dharma Systems Inc 6-83

User Guide
6.4.1.2 createStorageManagerHandle
This method is used by the SQL engine to get a handle to the storage environment.

Syntax
public static StorageManagerHandle

createStorageEnvironment() throws DharmaStorageException

Returns
StorageManagerHandle object.

Arguments
None

Description
The StorageEnvironment.createStorageManagerHandle method is used to return a
StorageManager object for use by the SQL engine.

6.4.1.3 beginTransaction
This method is used by the SQL engine to start a transaction.

Syntax
public void

beginTransaction() throws DharmaStorageException

Returns
None.

Arguments
None.

Description
The SQL engine calls StorageEnvironment.beginTransaction to begin a transaction.
The transaction that is started is the current transaction within the storage environ-
ment. All operations that are executed once the transaction is begun, until either Stora-
geEnvironment.commitTransaction or StorageEnvironment.rollbackTransaction is
executed, are considered to be part of this current transaction. A storage system must
take whatever actions are appropriate to ensure the transaction properties of atomicity,
isolation, consistency, and durability. The SQL engine does not enforce these proper-
ties.

6.4.1.4 rollbackTransaction
This method is used by the SQL engine to rollback a transaction.
6-84 Dharma Systems Inc

Java Stubs Storage Interface Reference
Syntax
public void

rollbackTransaction() throws DharmaStorageException

Returns
None.

Arguments
None.

Description
Terminates the current transaction begun by the last call to StorageEnviron-
ment.beginTransaction. The storage system must undo all changes made to tables and
indexes during the transaction.

6.4.1.5 commitTransaction
This method is used by the SQL engine to commit a transaction.

Syntax
public void

rollbackTransaction() throws DharmaStorageException

Returns
None.

Arguments
None.

Description
Terminates the current transaction begun by the last call to StorageEnviron-
ment.beginTransaction. The storage system must make permanent any changes to
tables and indexes made during the transaction, and make the changes visible so that
they may be accessed by current and subsequent transactions according to the concur-
rency control policies implemented by the storage manager.

6.4.1.6 close
Close the Storage environment handle.

Syntax
public void

close() throws DharmaStorageException
Dharma Systems Inc 6-85

User Guide
Returns
None.

Arguments
None.

Description
Closes storage environment handle.

6.4.2 StorageManagerHandle
Represents a storage manager in a storage environment. Storage managers provide the
base functionality for manipulating tables and indexes in storage systems. The Stor-
ageManagerHandle object is created using the createStorageManagerHandle() method
of the StorageEnvironment class.

Definition
public class StorageManagerHandle

Members
None.

Methods

6.4.2.1 createTable
This method is used by the SQL engine to create a table in the storage system.

Syntax
public int

createTable (String tableName, boolean metadataOnly,

 TableFields tableFields,

 TableFields primaryKeyList,

 String tableOwner) throws DharmaStorageException

Returns
An int value representing the table id for the table that was created or generated for an
existing table.

The table id is a unique identifier that will be used on subsequent calls to identify the
table. The SQL engine stores this id in the SYSTABLES catalog table along with the
table name. The SQL engine reserves table identifiers below 1000 and above 32767.
Implementations must generate table identifiers within those values. Implementations
must keep track of table identifiers and their corresponding table names. The SQL
6-86 Dharma Systems Inc

Java Stubs Storage Interface Reference
engine passes only the identifier, not the name, in subsequent calls. It is the implemen-
tation's responsibility to associate the identifier with the correct table.

Arguments
IN String tableName
The name of the table that is being created. tableName will contain the name as speci-
fied in the CREATE TABLE statement. If the CREATE TABLE statement also speci-
fied 'METADATA_ONLY' in the STORAGE_ATTRIBUTES clause, tableName will
contain the name of an existing table in the proprietary storage system.

IN boolean metadataOnly
A flag that indicates the SQL engine is inserting metadata into the system catalog
tables for a table that already exists in the proprietary storage system. The storage
manager should not create a new table, but instead return a table id for the SQL engine
to associate with the existing table name.

The SQL engine sets this flag to TRUE when the CREATE TABLE statement speci-
fies 'METADATA_ONLY' in the STORAGE_ATTRIBUTES clause. Implementations
use this mechanism to load metadata for existing tables.

IN TableFields tableFields
A list of field descriptions for the columns in the table. Field definition information
includes the field name, the field identifier, the field type, and a flag that indicates
whether null values are allowed. Additionally, depending on the data type of the field,
the length or the maximum length of the data type may be provided.

IN TableFields primaryKeyList
A list of primary key fields. primaryKeyList will be a subset of the fields specified in
the fldlList argument. This list will be empty unless primary key fields were specified
with the CREATE TABLE statement. A primary key is characterized by the constraint
that no two records in a table may have the same primary key value, and that no fields
of the primary key may have a null value.

Storage systems that support primary keys can use this information to create the pri-
mary key for the table. Storage systems that do not support primary keys can ignore
this information. In addition to passing down the primary key list, the SQL engine will
automatically create a unique index on the primary key fields. Creating this index
allows storage systems that do not directly support primary keys to support them indi-
rectly via the index.

To create the primary-key index, the SQL engine calls StorageManagerHandle.cre-
ateIndex with the isUnique argument set to TRUE, and the indexType argument set to
B. The SQL engine generates a unique name for the index, prefixed with SYS_, and
passes it as the indexName argument. The components of the index will be the fields
that make up the primary key in the order that they appear in the table, and the sort
order for each index component is ascending.

IN String tableOwner
A character string that specifies the user issuing the CREATE TABLE statement.
Many implementations will ignore this argument.
Dharma Systems Inc 6-87

User Guide
Description
Adds a table to a storage manager, or generates an identifier for an existing table.

6.4.2.2 dropTable
This method is used by the SQL engine to drop a table in the storage system.

Syntax
public void

dropTable (int tableID, boolean metadataOnly)

 throws DharmaStorageException

Returns
None

Arguments
IN int tableID
The id for the table that is being dropped.

IN boolean metadataOnly
A flag that indicates the SQL engine is only deleting metadata from the system catalog
tables for the specified table. The SQL engine sets this flag to TRUE when the DROP
TABLE statement specified 'METADATA_ONLY' in the STORAGE_ATTRIBUTES
clause. Implementations use this mechanism to unload metadata for tables that have
been deleted in the underlying storage system through means other than the Dharma
SDK or to disallow access through SQL to a table that will remain in the storage sys-
tem.

Description
StorageManagerHandle.dropTable is called as a direct result of the DROP TABLE
statement. tableID serves to identify the table to be dropped. By calling StorageMan-
agerHandle.dropTable, the SQL engine is informing the storage system that the table
is no longer needed, and that it effectively may be destroyed (or only the metaddata
associated with it may be destroyed if the metadataOnly flag is TRUE).

6.4.2.3 createIndex
This method is used by the SQL engine to create an index in the storage system.

Syntax
public int

createIndex (int tabIeID, boolean isUnique,

 boolean metadataOnly, char indexType,

 String indexName, IndexFields indexFields)
6-88 Dharma Systems Inc

Java Stubs Storage Interface Reference
 throws DharmaStorageException

Returns
An int value representing the index id for the index that was created or generated for
an existing index.

The index id is a unique identifier that will be used on subsequent calls to identify the
index. The SQL engine stores this id in the SYSINDEXES catalog table along with
the table name. The SQL engine reserves index identifiers below 1000 and above
32767. Implementations must generate index identifiers within those values. Imple-
mentations must keep track of index identifiers and their corresponding index names.
The SQL engine passes only the identifier, not the name, in subsequent calls. It is the
implementation's responsibility to associate the identifier with the correct index.

Arguments
IN int tableID
The table for which the index is being created.
IN boolean isUnique
A flag that indicates whether records in the index must be unique. If TRUE, the index
is unique. If FALSE, then the index allows duplicate records.

IN boolean metadataOnly
A flag that indicates the SQL engine is inserting metadata into the system catalog
tables for an index that already exists in the proprietary storage system. The storage
manager should not create a new index, but instead return an index id for the SQL
engine to associate with the existing index name.

The SQL engine sets this flag to TRUE when the CREATE INDEX statement speci-
fies 'METADATA_ONLY' in the STORAGE_ATTRIBUTES clause. Implementations
use this mechanism to load metadata for existing indexes.

IN char indexType
A flag that indicates the type of index. The SQL engine passes the TYPE argument
specified in an application's SQL CREATE INDEX statement. If the CREATE
INDEX statement did not include the TYPE argument, indexType is set to B. The
indexType argument does not imply any particular indexing technique. It is an arbi-
trary flag that allows the storage manager to indicate differing support for multiple
types of indexes. The SQL engine calls StorageManagerHandle.getStorageManager-
Info for each index type, and the storage manager can respond with different index
properties for each type. (For instance, that different index types support different
comparison operators.) The SQL engine also passes the indexType value when it
opens the index through the StorageManagerHandle.getIndexHandle or StorageMan-
agerHandle.getIndexScanHandle methods.

IN String indexName
The name of the index that is being created. indexName will contain the name as
specified in the CREATE INDEX statement. If the CREATE INDEX statement also
specified 'METADATA_ONLY' in the STORAGE_ATTRIBUTES clause, indexName
will contain the name of an existing index in the proprietary storage system.

IN IndexFields indexFields
Dharma Systems Inc 6-89

User Guide
A description of the index key fields. Field information includes a key-field
identifier, the corresponding field identifier in the table, data type, maximum
length, and sort order.

Description
Creates an index for a table. tableID identifies the table for which the index is being
created. indexFieldList provides the descriptive information that is needed to create
the index, including the number of components in the index and the sort order for
records in the index. This routine returns an indexid. The indexid is a number gener-
ated by the storage system that will be used on subsequent calls to identify the index.
The SQL engine will store this id in the sysindexes catalog table along with index
name.

6.4.2.4 dropIndex
This method is used by the SQL engine to drop an index in the storage system.

Syntax
public void

dropIndex(int tableID, int indexID, boolean metadataOnly)

 throws DharmaStorageException

Returns
None

Arguments
IN int tableID
The id of the table for the index that is being dropped.

IN int indexID
The id of the index that is being dropped.

IN boolean metadataOnly
A flag that indicates the SQL engine is only deleting metadata from the system catalog
tables for the specified index. The SQL engine sets this flag to TRUE when the DROP
TABLE statement specified 'METADATA_ONLY' in the STORAGE_ATTRIBUTES
clause. Implementations use this mechanism to unload metadata for indexes that have
been deleted in the underlying storage system through means other than the Dharma
SDK or to disallow access through SQL to a index that will remain in the storage sys-
tem.

Description
StorageManagerHandle.dropIndex is called as a direct result of the DROP INDEX
statement. indexID and tableID serve to identify the index to be dropped. By calling
StorageManagerHandle.dropIndex, the SQL engine is informing the storage system
that the index is no longer needed, and that it effectively may be destroyed (or only the
metaddata associated with it may be destroyed if the metadataOnly flag is TRUE)
6-90 Dharma Systems Inc

Java Stubs Storage Interface Reference
6.4.2.5 getTableHandle
Opens a table for non-scan operations.

Syntax
public TableHandle

getTableHandle(int tableID) throws DharmaStorageException

Returns
TableHandle object for the specified table.

Arguments
IN int tableID
The id of the table that is being opened.

Description
The SQL engine calls StorageManagerHandle.getTableHandle to open a table for
non-scan operations (See “TableHandle” on page 69.). In response, the storage man-
ager makes sure the table is open and supplies a handle that the SQL engine uses to
call subsequent methods. Although the SQL engine presumes that the table specified
by tableID is open after calling StorageManagerHandle.getTableHandle, the storage
manager should not automatically open files or load data structures each time the SQL
engine calls this function. This is because previous SQL statements may have resulted
in calls to functions that already opened the table. Instead, the storage manager should
use whatever file-caching mechanism exists in the underlying storage system to check
if the table is already open, and open it only if necessary.

6.4.2.6 getIndexHandle
Opens an index for non-scan operations.

Syntax
public IndexHandle

getIndexHandle(int tableID, int indexID, char indexType)

 throws DharmaStorageException

Returns
TableHandle object for the specified table.

Arguments
IN int tableID
The id of the table for the index that is being opened.

IN int indexID
The id of the index that is being opened.
Dharma Systems Inc 6-91

User Guide
IN char indexType
A flag that indicates the type of index. The SQL engine passes the TYPE argument
that was specified in an application's SQL CREATE INDEX statement. If the CRE-
ATE INDEX statement did not include the TYPE argument, indexType is set to B.The
indexType argument does not imply any particular indexing technique. It is an arbi-
trary flag that allows the storage manager to indicate differing support for multiple
types of indexes. The SQL engine calls StorageManagerHandle.getStorageManager-
Info for each index type, and the storage manager can respond with different index
properties for each type. (For instance, that different index types support different
comparison operators.)

Description
The SQL engine calls StorageManagerHandle.getIndexHandle to open an index for
non-scan operations (See “IndexHandle” on page 75.). In response, the storage man-
ager makes sure the index is open and supplies a handle that the SQL engine uses to
call subsequent methods. Although the SQL engine presumes that the index specified
by indexID and tableID is open after calling StorageManagerHandle.getIndexHandle,
the storage manager should not automatically open files or load data structures each
time the SQL engine calls this function. This is because previous SQL statements may
have resulted in calls to functions that already opened the index. Instead, the storage
manager should use whatever file-caching mechanism exists in the underlying storage
system to check if the index is already open, and open it only if necessary.

6.4.2.7 getTableScanHandle
Opens a table for scan operations.

Syntax
public TableScanHandle

getTableScanHandle (int tableID, int fetchHint)

 throws DharmaStorageException

Returns
TableScanHandle object for the specified table.

Arguments
IN int tableID
The id of the table that is being opened for scanning.

IN int fetchHint
Indicates if the record is being fetched in the context of a SQL statement which only
performs read operations or if it is being executed in the context of a SQL statement
that could perform writes. fetchHint will be one of the following values:

- StorageCodes.TPL_FH_READ: The record being fetched is not a candidate
for being updated in the context of the current SQL statement.

- StorageCodes.TPL_FH_WRITE: The record being fetched is a candidate for
being updated in the context of the current SQL statement.
6-92 Dharma Systems Inc

Java Stubs Storage Interface Reference
Note that fetchHint is in fact just a hint. It is strictly relative to the current SQL state-
ment. Even if fetchHint is set to StorageCodes.TPL_FH_READ, it does not imply
that the record being fetched was not already updated earlier in the transaction, or that
it will not be updated at some future point during the execution of the transac-
tion.

Description
The SQL engine calls StorageManagerHandle.getTableScanHandle to open a table
for scanning. In response, the storage manager makes sure the table is open and sup-
plies a scan handle that the SQL engine uses to call subsequent methods. Although
the SQL engine presumes that the table specified by tableID is open after calling Stor-
ageManagerHandle.getTableScanHandle, the storage manager should not automati-
cally open files or load data structures each time the SQL engine calls this function.
This is because previous SQL statements may have resulted in calls to functions that
already opened the table. Instead, the storage manager should use whatever file-cach-
ing mechanism exists in the underlying storage system to check if the table is already
open, and open it only if necessary.

6.4.2.8 getIndexScanHandle
Opens an index for scan operations.

Syntax
public IndexScanHandle

getIndexScanHandle (int tableID,int indexID,char indexType,

 int oper, int numberOfFieldValues,

 FieldValues searchValue, int scanHint,

 int fetchHint) throws DharmaStorageException

Returns
IndexScanHandle object for the specified index.

Arguments
IN int tableID
The id of the table for the index that is being opened for scanning.

IN int indexID
The id of the index that is being opened.

IN char indexType
A flag that indicates the type of index. The SQL engine passes the TYPE argument
that was specified in an application's SQL CREATE INDEX statement. If the CRE-
ATE INDEX statement did not include the TYPE argument, indexType is set to B.
The indexType argument does not imply any particular indexing technique. It is an
arbitrary flag that allows the storage manager to indicate differing support for multiple
Dharma Systems Inc 6-93

User Guide
types of indexes. The SQL engine calls StorageManagerHandle.getStorageManager-
Info for each index type, and the storage manager can respond with different index
properties for each type. (For instance, that different index types support different
comparison operators.)

IN int oper
A comparison operator that indicates the type of scan to perform. The operators spec-
ify a condition that is true or false about a given row or group of rows. They corre-
spond to SQL predicates. The operator is one of the list returned by the storage
manager in response to the StorageCodes.IX_PUSH_DOWN_RESTRICTS info type
argument of StorageManagerHandle.getStorageManagerInfo. Table 6-2: on page 6-94
lists the possible values for the index operators. Refer to “ Index Operator Notes” on
page 6-96 for more detail.

The SQL engine also passes the operator when it calls IndexScanHandle.getNex-
tRecord. The storage manager can process it during execution of either routine.

Table 6-2: Index Scan Comparison Operators

Operator Type of Scan Number of Comparison Values

StorageCodes.IXOP_EQ Equal One for each index component used

StorageCodes.IXOP_GT Greater than One for each index component used

StorageCodes.IXOP_GE Greater than or
equal

One for each index component used

StorageCodes.IXOP_LE Less than or equal One for each index component used

StorageCodes.IXOP_LT Less than One for each index component used

StorageCodes.IXOP_NE Not equal One for each index component used

StorageCodes.IXOP_BET Inclusive between Two for each index component used

Storage-
Codes.IXOP_BET_IE

Low-end inclusive
between

Two for each index component used

Storage-
Codes.IXOP_BET_EI

High-end inclusive
between

Two for each index component used

Storage-
Codes.IXOP_BET_EE

Exclusive between Two for each index component used

Storage-
Codes.IXOP_NOTBET

Not between (inclu-
sive)

Two for each index component used

Storage-
Codes.IXOP_FIRST

Start at first record None

StorageCodes.IXOP_LAST Return last record None

StorageCodes.IXOP_IN Equal to any of a
list of one or more
values

One for each index component used
and each value in the list
6-94 Dharma Systems Inc

Java Stubs Storage Interface Reference
IN int numberOfFieldValues
The number of index components used in the predicate for which the scan is to return
records. This varies from zero (for StorageCodes.IXOP_FIRST or Storage-
Codes.IXOP_LAST) up to the number of components in the index.

The implication of this number depends on the operator. For instance, a number-
OfFieldValues of 3 means:

- For basic predicates (StorageCodes.IXOP_EQ, StorageCodes.IXOP_GT,
IXOP_GE, StorageCodes.IXOP_LE, IXOP_LT, and Storage-
Codes.IXOP_NE), there are 3 values in searchValue. A predicate for a Stor-
ageCodes.IXOP_EQ operator would be of the form:

 A = index_search_val1 AND B = index_search_val2 AND C = index_search_val3

- For between operators (StorageCodes.IXOP_BET, Storage-
Codes.IXOP_BET_IE, IXOP_BET_EI, StorageCodes.IXOP_BET_EE, and
StorageCodes.IXOP_NOTBET), there are 6 values in searchValue, and the
predicate is of the form:

A BETWEEN index_search_val1 AND index_search_val2 AND

B BETWEEN index_search_val3 AND index_search_val4 AND

C BETWEEN index_search_val5 AND index_search_val6

- For StorageCodes.IXOP_IN and StorageCodes.IXOP_NOTIN, there are 3
sets of values (for these operators, numberOfFieldValues does not imply the
number of values in the sets) and the predicate is of the form:

A IN (index_search_val1 , index_search_val2 , ...) AND

B IN (index_search_valx, ...) AND

C IN (index_search_valy, ...)

in FieldValues searchValue
The list of values to use for comparison when searching for an index record.
The SQL engine passes the same list when it calls IndexScanHandle.getNex-
tRecord. The storage manager can process the values during execution of either
routine.

int scanHint
Indicates if fixed length keys are used.

IN int fetchHint
Indicates if the record is being fetched in the context of a SQL statement which only
performs read operations or if it is being executed in the context of a SQL statement
that could perform writes. fetchHint will be one of the following values:

Storage-
Codes.IXOP_NOTIN

Not equal to any of
a list of one or
more values

One for each index component used
and each value in the list

Table 6-2: Index Scan Comparison Operators

Operator Type of Scan Number of Comparison Values
Dharma Systems Inc 6-95

User Guide
- StorageCodes.TPL_FH_READ: The record being fetched is not a candidate
for being updated in the context of the current SQL statement.

- StorageCodes.TPL_FH_WRITE: The record being fetched is a candidate for
being updated in the context of the current SQL statement.

fetchHint indicates that a selected index record may be updated via the IndexHan-
dle.insert, IndexHandle.delete, TableHandle.update or TableHandle.delete functions.
This flag may be used by certain storage managers whose concurrency control policy
(locking policy) needs to differentiate or wishes to differentiate between reading a
record and reading a record for update.

Description
The SQL engine calls StorageManagerHandle.getIndexHandle to open an index for
update operations. In response, the storage manager makes sure the index is open and
supplies a handle that the SQL engine uses for subsequent index update methods. The
tableID and indexID arguments taken in combination identify the particular index to
be opened. The SQL engine obtains indexID and tableID from the SYSINDEXES cat-
alog table.

Although the SQL engine presumes that the index specified by indexID is open after
calling StorageManagerHandle.getIndexHandle, the storage manager should not
automatically open files or load data structures each time the SQL engine calls this
function. This is because previous SQL statements may have resulted in calls to func-
tions that already opened the index. Instead, the storage manager should use whatever
file-caching mechanism exists in the underlying storage system to check if the index is
already open, and open it only if necessary.

Index Operator Notes
The operator argument describes the type of index scan to perform by indicating the
comparison criteria for selecting records from the index.

Implementations indicate support for various comparison operators by including them
in the array of values they return in response to the Storage-
Codes.IX_PUSH_DOWN_RESTRICTS info type argument of StorageManagerHan-
dle.getStorageManagerInfo.

Implementations must at least support the StorageCodes.IXOP_FIRST operator. If
the storage manager does not support a particular operator, the SQL engine processes
such predicates internally. If the storage manager indicates it does not support pro-
cessing of any but the StorageCodes.IXOP_FIRST index operator, the SQL engine
requests that the storage manager return all records by passing the Storage-
Codes.IXOP_FIRST operator.

The SQL engine "pushes-down" processing of supported predicates to the storage
manager. The objective of pushing down such index predicates is to reduce the over-
all cost of executing an SQL statement by allowing the SQL engine optimizer to con-
sider options not otherwise available.

For operator values that supply comparison values, searchValue contains the values to
be compared as well as their field ids and data types. Note that the values of operator
and searchValue the SQL engine provides in StorageManagerHandle.getIndexScan-
Handle are also provided on each call to IndexScanHandle.getNextRecord. It is up to
6-96 Dharma Systems Inc

Java Stubs Storage Interface Reference
the storage manager to decide whether to process the operator value during execution
of StorageManagerHandle.getIndexScanHandle or IndexScanHandle.getNextRecord.

The following discussion gives some more detail on the individual operators.

StorageCodes.IXOP_EQ, StorageCodes.IXOP_GT, StorageCodes.IXOP_GE,
StorageCodes.IXOP_LE, StorageCodes.IXOP_LT, and Storage-
Codes.IXOP_NE

For these operators, the number of comparison values provided will be from one
(1) up to the number of components in the index. All index records whose compo-
nents values match the comparison values according to the operator that is pro-
vided should be returned via IndexScanHandle.getNextRecord.

StorageCodes.IXOP_BET, StorageCodes.IXOP_BET_IE, Storage-
Codes.IXOP_BET_EI, StorageCodes.IXOP_BET_EE, and Storage-
Codes.IXOP_NOTBET

For these operators, there are two comparison values for each index component.
Each pair of comparison values indicates the upper and lower bounds of a range.
So, the number of comparison values the SQL engine supplies in SearchValue is
twice the value passed in the numberOfFieldValues input argument.

When the SQL engine calls IndexScanHandle.getNextRecord with one of the range
operators, the storage manager should return all index records whose components
meet the criteria detailed in the following table:

StorageCodes.IXOP_FIRST and StorageCodes.IXOP_LAST
For operators StorageCodes.IXOP_FIRST and StorageCodes.IXOP_LAST, there are
no comparison values:

Table 6-3: BETWEEN Range Operators

Operator Returns

StorageCodes.IXOP_BET Records whose components are greater than or equal
to the lower bound of the range, and less than or equal
to the upper bound of the range.

StorageCodes.IXOP_BET_IE Records whose components are greater than or equal
to the lower bound of the range, and less than the upper
bound of the range.

StorageCodes.IXOP_BET_EI Records whose components are greater than the lower
bound of the range, and less than or equal to the upper
bound of the range.

StorageCodes.IXOP_BET_EE Records whose components are greater than the lower
bound of the range, and less than the upper bound of
the range.

StorageCodes.IXOP_NOTBET Records whose components are less than the lower
bound of the range, and greater than the upper bound of
the range.
Dharma Systems Inc 6-97

User Guide
- StorageCodes.IXOP_FIRST indicates that the index scan will start with the
first record of the index. The storage system should iterate through all other
records on successive calls to IndexScanHandle.getNextRecord.

- StorageCodes.IXOP_LAST indicates that the index scan need only return the
last record in the index. The storage system will not need to iterate through
the index backwards.

Note that which record is first or last is dependent on the sort order of the fields within
the index. See IndexHandle.insert page 6-75 for more detailed description of how
records are ordered within an index.

StorageCodes.IXOP_IN
For the StorageCodes.IXOP_IN operator, there is a set of comparison values for each
index component. The storage manager must determine how many comparison values
there are for each index component by examining the searchValue argument.

With StorageCodes.IXOP_IN, the storage manager should return all index records
whose components have values in the cross-product of the sets of comparison values,
as shown in the following table:

If a storage manager does not support StorageCodes.IXOP_IN (as indicated in the
storage manager response to StorageManagerHandle.getStorageManagerInfo), the
SQL engine checks whether the storage manager supports StorageCodes.IXOP_EQ.
If it does, the SQL engine translates an IN predicate to a series of calls to StorageMan-
agerHandle.getIndexScanHandle using StorageCodes.IXOP_EQ. If it does not, the
SQL engine processes the predicate internally.

StorageCodes.IXOP_NOTIN
The StorageCodes.IXOP_NOTIN operator is similar to StorageCodes.IXOP_IN, with
the following differences:

- With StorageCodes.IXOP_NOTIN, the storage manager should return all
index records whose components do not have values in the cross product of
the sets of comparison values.

- If a storage manager does not support StorageCodes.IXOP_NOTIN (as indi-
cated in the storage manager response to StorageManagerHandle.getStorage-
ManagerInfo), the SQL engine processes the predicate internally, without first
checking for support of StorageCodes.IXOP_NE.

Table 6-4: Rows Returned for IXOP_IN

Component 1
comparison
values

Component 2
comparison
values

Component 3
comparison values

Rows Returned

a, b 1, 2 x, y a 1 x
a 1 y
a 2 x
a 2 y
b 1 x
b 1 y
b 2 x
b 2 y
6-98 Dharma Systems Inc

Java Stubs Storage Interface Reference
6.4.2.9 getStorageManagerInfo
Returns details on storage systems support for indexes and other properties.

Syntax
public Object

getStorageManagerInfo (int infoType, char indexType)

 throws DharmaStorageException

Returns
An object containing the request information. The type of the object varies depending
on the information requested.

Arguments
IN int infoType
The type of information which is being requested. See “infoType values” on
page 99. for details on valid infoType values.

IN char indexType
A one-character flag that specifies the type of index the SQL engine is requesting
information about. CREATE INDEX statements specify the index type in the optional
TYPE argument, and the SQL engine calls StorageManagerHandle.getStorageMana-
gerInfo for details on the properties of each index type. (If the CREATE INDEX
statement omits the TYPE argument, the SQL engine sets the index type to B.)

The index type does not imply any particular indexing technique. It is an arbitrary
flag that allows the storage manager to indicate different properties for multiple types
of indexes. The SQL engine calls StorageManagerHandle.getStorageManagerInfo
for each index type, and the storage manager can respond with different index proper-
ties for each type. (For instance, that different index types support different compari-
son operators.)

Note The SQL engine does not supply an index type when it calls StorageMan-
agerHandle.getStorageManagerInfo with the IX_UPD_REQUIRED infoType value.
In that case, indexType is ignored, and the SQL engine assumes that the response is
true for all index types.

Description
The SQL engine calls StorageManagerHandle.getStorageManagerInfo to get details
on the properties of different types of indexes supported by a storage manager. The
infoType argument specifies the property of interest, and the indexType argument spec-
ifies the index type.

infoType values
Dharma Systems Inc 6-99

User Guide
StorageCodes.IX_ALL_COMPONENTS

StorageCodes.IX_COMPUTE_AGGR

StorageCodes.IX_FETCH_ALL_FIELDS

Description: Specific to indexes that include multiple table columns (multiple-com-
ponent indexes). When performing an index scan, whether search
values must be provided for all components. If TRUE is returned in
response to StorageCodes.IX_ALL_COMPONENTS, then the stor-
age manager is indicating that when the SQL engine is performing an
index scan, within the searchValue list, a comparison value must be
provided for all components of the index.

Input Parameter: indexType

Output Type: Boolean

Description: Whether the storage manager supports the SQL MIN and MAX aggre-
gate functions. (In other words, if the storage manager returns TRUE to
StorageCodes.IX_SORT_ORDER, and returns Storage-
Codes.IXOP_FIRST, and StorageCodes.IXOP_LAST in response to
StorageCodes.IX_PUSH_DOWN_RESTRICTS, it should also return
TRUE to StorageCodes.IX_COMPUTE_AGGR.)

Input Parameter: indexType

Output Type: Boolean

Description: If TRUE is returned in response to Storage-
Codes.IX_FETCH_ALL_FIELDS, then the storage manager is indicat-
ing that in response to a call to IndexScanHandle.getNextRecord, the
storage system is able to return all of the fields of the record, and not
just the index component fields. The SQL engine takes advantage of
this property to avoid TableHandle.getRecord calls.

Input Parameter: indexType

Output Type: Boolean
6-100 Dharma Systems Inc

Java Stubs Storage Interface Reference
StorageCodes.IX_PUSH_DOWN_RESTRICTS

StorageCodes.IX_SCAN_ALLOWED

Description: Comparison operators which the storage manager can process during
index scans for the specified type of index. The return value is an array
of Integers indicating which operators are supported by the storage
manager. The SQL engine will only push down processing of operators
that are contained within the list that the storage manager returns. The
SQL engine uses this list as the basis for the operator input argument to
IndexScanHandle.getNextRecord and StorageManagerHandle.getIn-
dexScanHandle. See Table 6-2: on page 6-94 for a list of the valid val-
ues. If the storage manager indicates it does not support processing of
an index comparison operator, the SQL engine processes the operator
internally.

In the following example, the storage manager supports 6 different oper-
ators for the index type ‘B’:

public Object
getStorageManagerInfo (int infoType,
 char indexType) throws DharmaStorageException
{
 . . .
 switch (infoType)
 {
 . . .
 case StorageCodes.IX_PUSH_DOWN_RESTRICTS:
 {
 if (indexType== 'B' || indexType =='b')
 {
 Integer tmp[] = new Integer[6];
 tmp[0] = new Integer(StorageCodes.IXOP_EQ);
 tmp[1] = new Integer(StorageCodes.IXOP_GT);
 tmp[2] = new Integer(StorageCodes.IXOP_GE);
 tmp[3] = new Integer(StorageCodes.IXOP_LE);
 tmp[4] = new Integer(StorageCodes.IXOP_LT);
 tmp[5] = new Integer(StorageCodes.IXOP_FIRST);
 return tmp;
 }
 break;
 }
 . . .

Input Parameter: indexType

Output Type: Array of Integer.

Description: Whether indexes of the specified type support index scans. Storage
managers return FALSE for indexes that are inherently non-scan-ori-
ented, such as hash indexes.

Input Parameter: indexType

Output Type: Boolean
Dharma Systems Inc 6-101

User Guide
StorageCodes.IX_SORT_ORDER

StorageCodes.IX_TID_SORTED

Description: Whether indexes of the specified type are sorted. In other words,
whether a scan on the index returns records in the order of the index
key.

Input Parameter: indexType

Output Type: Boolean

Description: Whether indexes of the specified type return records sorted by Recor-
dID. Ordinarily, indexes only guarantee to return records that meet the
provided comparison criteria and the records are not sorted by Recor-
dID. However, if the storage manager sets IX_TID_SORTED to TRUE,
the SQL engine can significantly optimize processing of compound
predicates that specify multiple indexes on the same table (including
specifying the same index multiple times).

For instance, the following search condition benefits from returning
records that are sorted by tuple identifier:

WHERE C1 > 12 AND C2 > 24

In this case, the SQL engine first retrieves the RecordIDs returned by
the first predicate, then retrieves the RecordIDs returned by the second
predicate, and performs an intersect operation on the two sets. This
intersect operation is much more efficient if the SQL engine can assume
the sets are returned in tuple identifier order.

Typically, to support StorageCodes.IX_TID_SORTED, storage manag-
ers need to perform special processing at run time. Or, if a table is
loaded with rows in index key order (resulting in the index key and tuple
identifier sort order being the same), storage managers can support
StorageCodes.IX_TID_SORTED for that index key.

Input Parameter: indexType

Output Type: Boolean
6-102 Dharma Systems Inc

Java Stubs Storage Interface Reference
StorageCodes.IX_UPD_REQUIRED

StorageCodes.DHCS_DISABLE_AUTH_CHECK

6.4.2.10 getProcedureHandle
Returns ProcedureHandle Object for a particular procedure/function.

Description: Whether the SQL engine must update indexes after an insert, update, or
delete operation on a table.

If the storage manager sets StorageCodes.IX_UPD_REQUIRED to
TRUE, it indicates that the SQL engine must directly manage the updat-
ing of indexes in addition to tables. When an SQL INSERT, UPDATE, or
DELETE statement is executed on some table, in addition to calling
TableHandle.insert, TableHandle.update, or TableHandle.delete on the
table, the SQL engine will execute IndexHandle.insert, or IndexHan-
dle.delete on the corresponding indexes.

If FALSE is returned, then the SQL engine will assume that the index will
be updated indirectly by the storage manager as a side effect of the exe-
cution of TableHandle.insert, TableHandle.update, or TableHan-
dle.delete.

Input Parameter: None

Output Type: Boolean

Description: If TRUE is returned in response to DHCS_DISABLE_AUTH_CHECK,
then the storage manager should not do an authorization check when
accessing an object owned by a user other than the current user.
According to the SQL Standard, users can access a table, or any data-
base object, only if the object is owned by the user, the user has explicit
permissions to access the table, or the user is the DBA. The Dharma
server carries out authorization checks to ensure that a user has access
to any objects referenced. Permissions to access a table are granted by
the owner to other users by means of the GRANT command. In certain
systems where all the database objects are required to be accessible,
issuing separate GRANT statements for each of the tables is cumber-
some. In systems using Dynamic Metadata, where the metadata is
dynamic, GRANTing the appropriate permissions may be difficult or
impossible. In such systems, disabling authorization checks provides a
simpler solution.

This function is called once per connection after the connection has
been made to the database system, so the storage system can
differentiate based on the user and database specified, disabling
authentication for some users in some databases while leaving it
enabled for others.

Input Parameter: None

Output Type: Boolean
Dharma Systems Inc 6-103

User Guide
Syntax
public ProcedureHandle

getProcedureHandle(int procedureID, boolean hasRetValue)

 throws DharmaStorageException

Returns
ProcedureHandle object for the specified procedure/function.

Arguments
IN int procedureID
The id of the procedure that is being used.

Description
The SQL Engine calls StorageManagerHandle.getProcedureHandle to get the Proce-
dureHandle type object corresponding to the procedure/function in the java storage
system. Later it makes a call to the execute of the returned object to execute the proce-
dure/function.

6.4.2.11 getProcedureMetaData
Gives ProcedureMetaData information for a particular procedure/function.

Syntax
public ProcedureMetaData

getProcedureMetaData(String procedureOwner,

 String procedureName,

 ProcedureColums procedureArgs)

 throws DharmaStorageException

Returns
ProcedureMetaData object for the specified procedure/function.

Arguments
IN int procedureOwner
The owner of the procedure.

IN int procedureName
The name of the procedure.

IN ProcedureColumns procedureArgs
The ProcedureColumns Object .
6-104 Dharma Systems Inc

Java Stubs Storage Interface Reference
Description
The SQL Engine calls StorageManagerHandle.getProcedureMetaData to get the Pro-
cedureMetaData information of a particular procedure/function.

6.4.2.12 getNumberOfTables
Returns number of tables existing in the storage system.

Syntax
public int

getNumberOfTables() throws DharmaStorageException

Returns
Returns number of tables existing in the storage system.

Arguments
None

Description
The SQL engine makes a call to this method only when storage managers indicate
they support dynamic metadata.

The SQL engine calls StorageManagerHandle.getNumberOfTables to get the number
of tables in the storage system.

6.4.2.13 getTableInfo
Gets the table information based on the tableSequenceNumber.

Syntax
public DharmaRecord

getTableInfo(int tableSequenceNumber)

 throws DharmaStorageException

Returns
A DharmaRecord Object that contains the information about the table.

Arguments
IN int tableSequenceNumber
The table no whose information is required
Dharma Systems Inc 6-105

User Guide
Description
The SQL engine makes a call to this method only when storage managers indicate
they support dynamic metadata.

The SQL engine calls StorageManagerHandle.getTableInfo to get the table’s infor-
mation in the storage system.The structure of DharmaRecord for the table information
will be

6.4.2.14 getTableColumnInfo
Gets the table's column information based on the tableID & tableColumnSequence-
number.

Syntax
public DharmaRecord

getTableColumnInfo(String tableName, String ownerName,

 int tableID, int tableColumnSequenceNumber)

 throws DharmaStorageException

Returns
DharmaRecord object which contains the table's column information.

Arguments
IN String tableName
The name of the table .

IN String ownerName
The owner of the table .

IN int tableID
The table identifier whose column information is required.

IN int tableColumnSequenceNumber

Table 6-5: structure of DharmaRecord for getting Table Information

Field 1 Integer Object representing the table ID

Field 2 String Object representing the table name.

Field 3 String Object representing the Owner name.

Field 4 Boolean Object indicating whether a table is read only.

Field 5 Integer Object representing the number of columns.
Field 6 Integer Object representing the number of indexes on this table.

Field 7 Boolean object representing whether the table should be considered as
public table.
6-106 Dharma Systems Inc

Java Stubs Storage Interface Reference
The column no whose information is required .

Description
The SQL engine makes a call to this method only when storage managers indicate
they support dynamic metadata.

The SQL engine calls StorageManagerHandle.getTableColumnInfo to get the infor-
mation of the column based on the tableID and tableColumnSequenceNumber. The
structure of the DharmaRecord for getting the column information of the table is

6.4.2.15 getIndexInfo
Gets the Index's information based on the tableID and indexSequenceNumber.

Syntax
public DharmaRecord

getIndexInfo(String tableName, String ownerName,

 int tableID,int indexSequenceNumber)

 throws DharmaStorageException

Returns
DharmaRecord object which contains the index information.

Arguments
IN String tableName
The name of the table .

IN String ownerName
The owner of the table .

IN int tableID
The table identifier.

IN int indexSequenceNumber
The indexSequenceNumber whose information is required.

Table 6-6: Structure of DharmaRecord for getting Table’s Column Information

Field 1 String Object representing the column name.

Field 2 Integer Object representing the data type.

Field 3 Boolean Object indicating whether a column is nullable.

Field 4 Short Object representing the maximum length of the column.
Field 4 Short Object representing the precision for numeric data type column.

Field 5 Short Object representing the scale for numeric data type column.
Dharma Systems Inc 6-107

User Guide
Description
The SQL engine makes a call to this method only when storage managers indicate
they support dynamic metadata.

The SQL engine calls StorageManagerHandle.getIndexInfo to get the information of
the index based on the tableID and indexSequenceNumber. The structure of the Dhar-
maRecord for getting the index information of the table is

Public tables
According to the SQL standard, qualifying a database object with an owner name
allows objects that are not owned by the current user to be referenced. Any unquali-
fied reference to a table in a SQL statement always translates to a table owned by the
current user. It is sometimes desirable to be able to refer to tables owned by other
users without having to qualify them with the owner name. In the case of systems
where the metadata is not dynamic but stored in the Dharma Flat File (FF) system, this
is achieved by using the CREATE PUBLIC SYNONYM command for the desired
tables. Users can then use the synonym without any qualification to access the table
assuming they have been granted access permission on the table. Access permissions
can be granted using the GRANT command.

When a system uses Dynamic Metadata, creating a permanent synonym is not an
effective mechanism as the tables of the database are dynamic in nature and could
change from one connection to another. In order to provide the same functionality for
systems that use Dynamic Metadata, a flag has been introduced to mark a table as a
Public table. At the time the information about the table is returned by the dynamic
metadata stub functions (StorageManagerHandle.getTableInfo), a table may be flagged
as Public by setting the ispublic flag to TRUE. When a tables is flagged as a public
table, a public synonym of the same name is automatically created and all access
rights on the table are granted to all users (public).

Note: If a table owned by the current user has the same name as a public table, any
non-qualified reference to the table will refer to the user’s table. It is not possible to
have two public tables with the same name but owned by different users.

Table 6-7: DharmaRecord structure for getting index information.

Field 1 Integer Object representing index ID.

Field 2 String Object representing the index name.

Field 3 String Object representing the index type.

Field 4 Boolean Object indicating whether an unique index or not.

Field 5 Boolean Object indicating whether an unique index or not.

Field 6 Integer Object representing the number of fields the index is
created upon. See the discussion of public table in the
description below.
6-108 Dharma Systems Inc

Java Stubs Storage Interface Reference
6.4.2.16 getIndexColumnInfo
Gets the Index's column information based on the indexID and indexColumnSequen-
ceNumber.

Syntax
public DharmaRecord

getIndexColumnInfo(String tableName, String ownerName,

 int indexID, int indexColumnSequenceNumber)

 throws DharmaStorageException

Returns
DharmaRecord object which contains the index column information.

Arguments
IN String tableName
The name of the table .

IN String ownerName
The owner of the table .

IN int indexID
The table identifier.

IN int indexColumnSequenceNumber
The index number whose information is required.

Description
The SQL engine makes a call to this method only when storage managers indicate
they support dynamic metadata.

The SQL engine calls StorageManagerHandle.getIndexColumnInfo to get the infor-
mation of the index column based on the indexID. The structure of the Dhar-
maRecord for getting the index column information of a table is

6.4.2.17 Close
Close the Storage manager handle.

Table 6-8: DharmaRecord structure for getting index’s column information

Field 1 String Object representing the field name.

Field 2 Integer Object representing the data type.

Field 3 Integer Object representing Sort Order.
Dharma Systems Inc 6-109

User Guide
Syntax
public void

close()throws DharmaStorageException

Returns
None.

Arguments
None.

Description
Closes storage manager handle.

6.5 LONG DATA TYPE INTERFACES

6.5.1 LongDataHandle
This class represents a long handle. Storage developers should implement the methods
in this class.

Definition
public class LongDataHandle

Members
None.

Methods

6.5.1.1 putLongVarCharData
This method stores a part of the longvarchar data.

Syntax
public void

putLongVarCharData(DharmaLongVarCharData dhlvcIn, int offset)

 throws DharmaStorageException

Returns
None

Arguments
IN DharmaLongVarCharData dhlvcIn
The DharmaLongVarCharData object.
6-110 Dharma Systems Inc

Java Stubs Storage Interface Reference
IN int offset
Starting length from where to put data.

Description
This method is used to store part of long varchar data in the DharmaRecord.

6.5.1.2 putLongVarBinaryData
This method stores a part of the longvarbinary data.

Syntax
public void

 putLongVarBinaryData(DharmaLongVarBinaryData dhlvbIn,
 int offset)throws DharmaStorageException

Returns
None

Arguments
IN DharmaLongVarBinaryData dhlvbIn
The DharmaLongVarCharBinary object.

IN int offset
Starting length from where to put data.

Description
This method is used to store part of long varbinary data in the DharmaRecord.

6.5.1.3 getLongVarCharData
This method retrieves a part of the longvarchar data.

Syntax
public DharmaLongVarCharData
putLongVarCharData(int length, int offset)

 throws DharmaStorageException

Returns
DharmaLongVarCharData object

Arguments
IN int length
The length of the data to be retrieved.
Dharma Systems Inc 6-111

User Guide
IN int offset
Starting length from where to retrieve data.

Description
This method is used to retrieve part of long var char data from the DharmaRecord.

6.5.1.4 getLongVarBinaryData
This method retrieves a part of the longvarBinary data.

Syntax
public DharmaLongVarBinaryData
putLongVarBinaryData(int length, int offset)

 throws DharmaStorageException

Returns
DharmaLongVarBinaryData object

Arguments
IN int length
The length of the data to be retrieved.

IN int offset
Starting length from where to retrieve data.

Description
This method is used to retrieve a part of the long var binary data from the Dhar-
maRecord.

6.6 PROCEDURE & FUNCTION INTERFACES

6.6.1 ProcedureHandle
This is the class from which storage System functions & procedures will be extended
from

Methods

6.6.1.1 execute
This function executes a procedure or a function.

Syntax
public void execute(String userName, FieldValues parameters)
6-112 Dharma Systems Inc

Java Stubs Storage Interface Reference
throws DharmaStorageException

Returns
None

Arguments
IN String userName
Name of the user.

IN parameters

The FieldValues object that represents input parameters of a function or procedure

Description
This function executes a procedure or a function

6.6.1.2 getNextRecord
This function returns the next record.

Syntax
public DharmaRecord

getNextRecord(String userName) throws DharmaStorageException

Returns
DharmaRecord object

Arguments
IN String userName
Name of the user.

Description
This function returns the next record.

6.6.1.3 close
This function returns the next record.

Syntax
public void

close() throws DharmaStorageException

Returns
None. Throws DharmaStorageException.
Dharma Systems Inc 6-113

User Guide
Arguments
None.

Description
This function closes the procedureHandle.

6.7 MISCELLANEOUS CLASSES

6.7.1 StorageCodes
This class is used to hold all the constant values used by the storage implementation.
The error codes are listed in this class. Stub developers add required constants includ-
ing error codes in this class.

Definition
public class StorageCodes

Members
All the error codes and commonly used literals are listed here.

Methods
None.

6.7.2 DharmaStorageException
This is the Exception class thrown when there is an error condition. All the error mes-
sages are stored in a static table of error messages. Stub developers can add new error
messages and error codes into this table. Error codes must be defined in the Storage-
Codes class.

Definition
public class DharmaStorageException extends Exception

Members
int errorcode;
Error code for exception being thrown.

private static Hashtable ErrorTable;
Table containing all error codes and their associated text strings.

Methods

6.7.2.1 DharmaStorageException
This constructor should be used to throw exceptions.
6-114 Dharma Systems Inc

Java Stubs Storage Interface Reference
Syntax
public

DharmaStorageException(int errcode)

Returns
DharmaStorageException object.

Arguments
IN int errorcode
The id of the exception being raised. The error code should be in the ErrorTable.

Description
This constructor is used to throw an exception.

Example:

 // Property not supported.
 throw new DharmaStorageException
 (StorageCodes.ERR_UNSUPPORTED_RSSINFO);

6.7.2.2 getErrorMessage
Return the error message for a given error code.

Syntax
public static String

getErrorMessage(int errorcode)

Returns
A String object containing the error message.

Arguments
IN int errorcode
The id of the exception being raised. The error code should be in the ErrorTable.

Description
This method returns a string associated with the argument errorcode.

6.7.2.3 getErrorMessage
Return the error code associated with the DharmaStorageException object.
Dharma Systems Inc 6-115

User Guide
Syntax
public int

getErrorCode()

Returns
An int containing the error code.

Arguments
None

Description
This method returns the value of the errorcode member.

6.8 MAPPING BETWEEN SQL AND JAVA DATA TYPES
SQL Engine follows a strict mapping between SQL types and Java data types. The
Mapping is given in the following table.

Table 6-9: Mapping Between SQL and Java Data Types

SQL Data Type Java Data Type

StorageCodes.CHAR java.lang.String

StorageCodes.NVARCHAR java.lang.String

StorageCodes.INTEGER java.lang.Integer

StorageCodes.SMALLINT java.lang.Short

StorageCodes.BIT java.lang.Boolean

StorageCodes.REAL java.lang.Float

StorageCodes.FLOAT java.lang.Double

StorageCodes.DATE java.sql.Date

StorageCodes.TIME java.sql.Time

StorageCodes.TIMESTAMP java.sql.Timestamp

StorageCodes.TINYINT java.lang.Byte

StorageCodes.BIGINT java.lang.Long

StorageCodes.NUMERIC java.math.BigDecimal

StorageCodes.MONEY java.math.BigDecimal

StorageCodes.BINARY java.io.ByteArrayInputStream
6-116 Dharma Systems Inc

Java Stubs Storage Interface Reference
SQL Engine constructs Java objects as per the mapping given in the above table for
each column and sets them in FieldValue object for TableHandle.insert, TableHan-
dle.update, IndexHandle.insert, IndexHandle.delete, IndexScanHandle.getNex-
tRecord and StorageManagerHandle.getIndexScanHandle calls. SQL Engine expects
objects of the specific Java types to be present in DharmaRecord returned by Table-
Handle.getRecord, TableScanHandle.getNextRecord and IndexScanHandle.getNex-
tRecord methods.
Dharma Systems Inc 6-117

User Guide
6-118 Dharma Systems Inc

Appendix A

Server Utility Reference
A.1 OVERVIEW

This sections contains reference information on utilities used to configure the Dharma
SDK Server.

• The dhdaemon executable image starts the Dharma SDK Server and enables net-
work access from clients.

• On Windows, the pcntreg utility registers the dhdaemon executable image as a
service in the system registry.

• isql loads metadata into the data dictionary and provides a simple, general-pur-
pose SQL interface on the server.

• mdcreate creates a data dictionary and provides a name for access to the propri-
etary storage system

A.2 DHDAEMON
The dhdaemon executable image starts the Dharma SDK Server and enables network
access from clients:

• On UNIX, dhdaemon is the only way to start the server process.

• On Windows, dhdaemon is an alternative to starting the server process as a ser-
vice.

Syntax
dhdaemon [option [option ...]] { start | stop | status }

option ::

 -c

| -e server_name

| -s service_name

| -q

Arguments
-c
On Windows, starts the server as a console application. This approach allows you to
use debugging tools and allows user-level environment variables (such as
TPESQLDBG) to affect the dhdaemon process. (When started as a service, the
Dharma Systems Inc A-1

User Guide
dhdaemon process only sees system environment variables.) The -c option is applica-
ble only to Windows, and required there to start the server from the command line.

-e server_name
The name of the executable to use for the Dharma SDK Server process. For example,
use the -e option to specify the sample implementation executable demo as the
Dharma SDK Server process:

$ dhdaemon -e $TPEROOT/bin/dhdemo start

-s service_name
The name of a network service in the services file. If the dhdaemon command does
not include the -s option, the default is sqlnw.

-q
Starts the dhdaemon process in "quiet mode", which displays fewer messages.

start
Starts the dhdaemon process.

stop
Stops the dhdaemon process.

status
Displays the status of the process and any child processes it has spawned. For exam-
ple:

$ dhdaemon status

 Dharma/dhdaemon Version 09.01.0000

 Dharma Systems Inc (C) 1988-2005.

 Dharma Systems Pvt Ltd (C) 1988-2005.

Daemon version: Feb 10 2005 17:02:43

 running since: 02/19/2005 17:46:22 on bhima

Working directory: /vol6/sdkdir

SQL-Server version: /vol6/sdkdir/bin/dhdaemon

Nr of servers started: 101

 running: 0

 crashed: 0

A.3 PCNTREG
Adds and deletes entries for the Dharma SDK in the Windows registry.
A-2 Dharma Systems Inc

Server Utility Reference
Note The pcntreg utility is only applicable to Windows.

Syntax
pcntreg { p path | d }

Arguments
p path
Register dhdaemon. The path argument specifies the disk and directory name for the
top-level dharma directory (for example, c:\dharma). If the path argument contains
spaces, it needs to be delimited by double quotes, as shown below:

C:\>pcntreg p "C:\Program Files\Dharma Systems
Inc\dhsdk_product"

d
Delete the registry entry for dhdaemon.

A.4 MDCREATE
Creates a data dictionary that stores metadata (details on the structure of SQL tables
and indexes).

Syntax
mdcreate [-v] [-d directory_spec] dbname

Arguments
-v
Specifies verbose mode, so mdcreate generates detailed status messages.

-d directory_spec
Specifies an alternative directory specification in which to create the data dictionary.
This argument is valid only for the Desktop configuration.

The mdcreate utility creates a subdirectory to contain the data dictionary files. It uses
the name specified in the dbname argument for the subdirectory. There are three lev-
els of defaults that determine where mdcreate creates this subdirectory:

• The directory specified by the -d argument

• If the mdcreate does not specify -d, the directory specified by the TPE_DATADIR
environment variable

• If TPE_DATADIR is not set, mdcreate creates the dbname subdirectory under the
directory specified by the TPEROOT directory.

For example:

%TPEROOT%\bin\mdcreate -d “E:\Data Files\Dharma Databases”
demo_db
Dharma Systems Inc A-3

User Guide
This command creates a subdirectory called demo_db.dbs under the e:\Data
Files\Dhamra Databases directory and populates the directory with the necessary
files.

Once you create the database subdirectory in this manner, you must explicitly specify
its location in isql command lines and when you add ODBC data source names:

• In isql, use the -d option to specify the same directory path as you used for mdcre-
ate. For example:

isql -s %TPEROOT%\odbcsdk\sample\md_template -d “E:\Data
Files\Dharma Databases” demo_db

• In the Microsoft ODBC Administrator utility, the ODBC Setup dialog box con-
tains a Data Dir text-box field. Use it to specify the same directory path as you
used for mdcreate.

dbname
The name of the database. ODBC applications and the isql utility specify dbname to
access the database. The name of the database should not exceed 32 characters,
excluding the .dbs extension. Also while specifying the database name, it should not
include the .dbs extension.

A.5 ISQL
The primary use for isql is to load metadata into data dictionaries via a SQL script,
which contains CREATE TABLE and INDEX statements with the
STORAGE_ATTRIBUTES 'METADATA_ONLY' clause. This clause directs the
SQL engine to insert metadata into the data dictionary without requiring the propri-
etary storage system to create an empty table or index. The table or index name used
in the CREATE statement must be the same as an existing table or index in the propri-
etary storage system.

You can also use isql to create new tables or issue SQL queries interactively. Invoke
it without the -s option and specify the database you want to access. Terminate state-
ments with a semicolon. To exit from interactive isql, type CTRL/D.

Syntax
isql [-s script_file] [-u user_name] [-a password] [-d
directory_spec] dbname

Arguments
-s script_file
The name of a SQL script file isql executes.

Note: If the file name has a space, such as:

test script.sql

The file name must be enclosed in doubles quotes, such as:

isql -s "test script.sql" testdb

-u user_name
A-4 Dharma Systems Inc

Server Utility Reference
The user name to connect to the database specified. The default is the current user of
the operating system. Unless you log in as dharma, you should specify -u dharma on
the isql command line.

-a password
The password to connect to the database specified. The default is null.

-d directory_spec
An alternative location for the data dictionary directory. This argument is valid only
for the Desktop configuration. If the mdcreate utility specified the -d argument, isql
must specify the same argument (or the TPE_DATADIR environment variable should
specify directory_spec).

dbname
The name of the database, as specified to the mdcreate utility. The name of the data-
base should not exceed 32 characters, excluding the .dbs extension. Also while speci-
fying the database name, it should not include the .dbs extension.

A.6 ENVIRONMENT VARIABLES
DH_DB_OPTIONS=implementer specific connection information

An additional character string can be passed to the storage system along with the user
name, password and database while connecting to the database. This string can be
used by the storage system to pass any implementation specific information desired.
The string is limited to a length of not more than 200 characters. Specification of the
additional connection information is optional.

When a connection is made the server makes a call to the dhcs_rss_init() or Storag-
eEnvironment.createStorageEnvironment() stub function passing the database, user-
name and password to the storage system. An additional parameter has been
introduced to pass the user defined connection information to the storage system.
Dharma Systems Inc A-5

User Guide
A-6 Dharma Systems Inc

Appendix B

System Catalog Tables

B.1 OVERVIEW
The Dharma SDK maintains a set of system tables for storing information about
tables, columns, indexes, constraints, and privileges. These tables are called system
catalog or dictionary tables.

SQL data definition statements and GRANT and REVOKE statements update system
catalog tables. Users have read access to the system catalog tables. The database
administrator has update access to the tables, but should avoid modifying them
directly.

There are two types of tables in the system catalog: base tables and extended tables.
Base tables store the information on the table spaces, tables, columns, and indexes that
make up the database. The extended tables contain information on constraints, privi-
leges, and statistical information.

The owner of the system tables is dharma. If you connect to a Dharma environment
with a User ID other than dharma, you need to qualify references to the tables in SQL
queries. For example:

SELECT * FROM DHARMA.SYSTABLES

The following table shows details of the columns in each system table. Here is the
SQL query that generated the data for the table. You can modify it to generate a simi-
lar list that includes user-created tables by omitting the line and st.tbltype = 'S'.

select sc.tbl 'Table', sc.col 'Column',

 sc.coltype 'Data Type', sc.width 'Size'

from dharma.syscolumns sc, dharma.systables st

where sc.tbl = st.tbl

 and st.tbltype = 'S'

order by sc.tbl, sc.id
Dharma Systems Inc B-1

User Guide
B.2 SYSTEM CATALOG TABLES DEFINITIONS
The following table lists all the tables in the system catalog. It gives a brief descrip-
tion of their purpose and lists the column definitions for every table.

Table B-1: System Catalog Table Definitions

Table Purpose Column Data Type Size

sys_chk_constrs Contains the CHECK
clause for each check
constraint specified on a
user table.

chkclause varchar 2000

chkseq integer 4

cnstrname varchar 32

owner varchar 32

tblname varchar 32

sys_chkcol_usage Contains one entry for
each column on which the
check constraint is speci-
fied

cnstrname varchar 32

colname varchar 32

owner varchar 32

tblname varchar 32

sys_keycol_usage Contains one entry for
each column on which pri-
mary or foreign key is
specified

cnstrname varchar 32

colname varchar 32

colposition integer 4

owner varchar 32

tblname varchar 32

sys_ref_constrs Contains one entry for
each referential con-
straint specified on a user
table

cnstrname varchar 32

deleterule varchar 1

owner varchar 32

refcnstrname varchar 32

refowner varchar 32

reftblname varchar 32

tblname varchar 32
B-2 Dharma Systems Inc

System Catalog Tables
sys_tbl_constrs Contains one entry for
each table constraint.

cnstrname varchar 32

cnstrtype varchar 1

idxname varchar 32

owner varchar 32

tblname varchar 32

syscalctable Contains exactly one row
with a single column with
a value of 100.

fld integer 4

syscolauth Contains the update privi-
leges held by users on
individual columns of
tables in the database.

col varchar 32

grantee varchar 32

grantor varchar 32

ref varchar 1

tbl varchar 32

tblowner varchar 32

upd varchar 1

syscolumns Contains one row for each
column of every table in
the database.

charset varchar 32

col varchar 32

collation varchar 32

coltype varchar 10

dflt_value varchar 250

id integer 4

nullflag varchar 1

owner varchar 32

scale integer 4

tbl varchar 32

width integer 4

sysdatatypes Contains information on
each data type supported
by the database.

autoincr smallint 2

casesensitive smallint 2

Table B-1: System Catalog Table Definitions

Table Purpose Column Data Type Size
Dharma Systems Inc B-3

User Guide
createparams varchar 32

datatype smallint 2

dhtypename varchar 32

literalprefix varchar 1

literalsuffix varchar 1

localtypename varchar 1

nullable smallint 2

odbcmoney smallint 2

searchable smallint 2

typeprecision integer 4

unsignedattr smallint 2

sysdbauth Contains the database-
wide privileges held by
users.

dba_acc varchar 1

grantee varchar 32

res_acc varchar 1

sysidxstat Contains statistics for
each index in the data-
base.

idxid integer 4

nleaf integer 4

nlevels smallint 2

recsz integer 4

rssid integer 4

tblid integer 4

sysindexes Contains one row for each
component of an index in
the database. For an
index with n components,
there will be n rows in this
table.

colname varchar 32

id integer 4

idxcompress varchar 1

idxmethod varchar 1

idxname varchar 32

idxorder varchar 1

Table B-1: System Catalog Table Definitions

Table Purpose Column Data Type Size
B-4 Dharma Systems Inc

System Catalog Tables
idxowner varchar 32

idxsegid integer 4

idxseq integer 4

idxtype varchar 1

rssid integer 4

tbl varchar 32

tblowner varchar 32

syssynonyms Contains one entry for
each synonym in the data-
base.

ispublic smallint 2

screator varchar 32

sname varchar 32

sowner varchar 32

sremdb varchar 32

stbl varchar 32

stblowner varchar 32

systabauth Contains privileges held
by users for tables, views,
and procedures.

alt varchar 1

del varchar 1

exe character 1

grantee varchar 32

grantor varchar 32

ins varchar 1

ndx varchar 1

ref varchar 1

sel varchar 1

tbl varchar 32

tblowner varchar 32

upd varchar 1

systables Contains one row for each
table in the database.

creator varchar 32

has_ccnstrs varchar 1

has_fcnstrs varchar 1

Table B-1: System Catalog Table Definitions

Table Purpose Column Data Type Size
Dharma Systems Inc B-5

User Guide
has_pcnstrs varchar 1

has_ucnstrs varchar 1

id integer 4

owner varchar 32

rssid integer 4

segid integer 4

tbl varchar 32

tbl_status varchar 1

tblpctfree integer 4

tbltype varchar 1

systblspaces No longer used. id integer 4

tsname varchar 32

systblstat Contains table statistics
for each user table.

card integer 4

npages integer 4

pagesz integer 4

recsz integer 4

rssid integer 4

tblid integer 4

sysviews Contains information on
each view in the data-
base.

creator varchar 32

owner varchar 32

seq integer 4

viewname varchar 32

viewtext varchar 2000

Table B-1: System Catalog Table Definitions

Table Purpose Column Data Type Size
B-6 Dharma Systems Inc

Appendix C

Storing NUMERIC Data Directly
C.1 OVERVIEW

This section describes how storage managers can store and return values defined as
the SQL NUMERIC data type using the internal Dharma SDK storage format.

This is typically not necessary, since storage managers can use the function
dhcs_conv_data to convert from the internal NUMERIC storage format to a form that
is easy to manipulate. (For details on dhcs_conv_data, see page 5-83.) Using
dhcs_conv_data allows storage managers to avoid the complexities of dealing with
the NUMERIC storage format directly.

However, some implementations choose to directly manipulate NUMERIC values for
better performance, or because their own internal storage format is similar.

In SQL, type NUMERIC corresponds to a number with the given precision (maximum
number of digits) and scale (the number of digits to the right of the decimal point). By
default, NUMERIC columns have a precision of 32 and scale of 0.

Internally, Dharma SDK uses the dhcs_num_t structure to store and return values of
NUMERIC type. Storage managers can access dhcs_num_t to directly store and
retrieve NUMERIC values, as discussed in the rest of this section.

C.2 INTERNAL STORAGE FORMAT FOR NUMERIC DATA
The dhcs_num_t structure is as follows:

 typedef struct {

 short dec_num ;

 char dec_digits [17] ;

 } dhcs_num_t ;

dec_num
The dec_num field of the structure contains the number of valid bytes in the dec_digits
array.

dec_digits [17]
The dec_digits array contains the actual numeric data, stored in two parts:

• The first byte of dec_digits (dec_digits[0]) contains a sign bit and the exponent
for the value, stored in "excess-64" notation.

• The second and subsequent valid bytes of dec_digits (dec_digits[1] through
dec_digits[dec_num]) contain base-100 values each representing two digits.

The following figure shows the format for the dec_digits array.
Dharma Systems Inc C-1

User Guide
Figure C-1: Format for NUMERIC Data Stored in the dhcs_num_t Structure

The following section describes in detail how to interpret data in the dec_digits array.

C.3 INTERPRETING NUMERIC DATA STORED IN INTERNAL FORMAT

C.3.1 Interpreting the Sign/Exponent Byte of dec_digits
The high-order bit of dec_digits[0] specifies the sign of the NUMERIC data: 1 means
positive and 0 means negative.

The 7 lower-order bits of dec_digits[0] contain the exponent, stored in excess 64
notation. In excess-64 notation, you subtract 64 from the stored value to determine
the actual value.

For dec_digits[0], this means you subtract 64 from the value stored in the 7 lower-
order bits to determine the value of the exponent. However, if the sign bit of
dec_digits[0] is 0 (indicating a negative value), you must first perform a one’s com-
plement of the 7 lower-order bits before subtracting 64. (To perform a one’s comple-
ment, swap zeroes with ones and ones with zeroes.)

The following example shows how to determine the sign of the NUMERIC data and
the value of its exponent when dec_digits[0] contains a base-10 value of 223.

Example 3-1: Determining Sign and Exponent of NUMERIC Values

The following example shows another example of dec_digits[0], containing the base-
10 value of 100, which represents a negative data value and a negative exponent
value.

Decimal value in dec_digits[0] 223

Binary equivalent 11011111

Sign bit 1 (Positive)

One’s complement of expo-
nent bits

Not necessary, since sign bit is positive

Binary value of exponent bits
(excess-64 notation)

 1011111

Decimal value of exponent bits
(excess-64 notation)

95

Actual value of exponent 95 - 64 = 31

11111111 11111111 11111111 11111111 11111111 11111111 ...

dec_digits[0] dec_digits[1] dec_digits[2] dec_digits[3] dec_digits[4] dec_digits[5] ...

dec_num bytes

Sign bit
(set means positive)

Exponent bits
(excess-64 notation)

Data values bytes
(base 100)
C-2 Dharma Systems Inc

Storing NUMERIC Data Directly
Example 3-2: Determining Sign and Exponent of NUMERIC Values

C.3.2 Interpreting the Data Values Bytes of dec_digits
The rest of the bytes in the dec_digits array contain the base-100 digits of the
NUMERIC data, two digits in each byte. To extract the values from each data byte:

1. Convert the binary value to decimal.

2. If the sign bit indicated a negative number, perform a 100’s complement on the
value (subtract the value from 100).

The resulting base-100 digits represent a number between 0 and 1. Multiply that
result by 100 raised to the value of the exponent to get the final NUMERIC value.

C.3.3 Complete Examples: Interpreting Sign/Exponent and Data Bytes of
dec_digits

The following examples detail how to extract base-10 values from dec_digits. Use
them as a guide for interpreting values returned by Dharma SDK in dhcs_num_t or to
store values in the database using dhcs_num_t.

Example 3-3: Interpreting NUMERIC Storage: Positive Exponent and Data

This example shows how the (base-10) value 123456 is stored in dec_digits.

Decimal value in dec_digits[0] 100

Binary equivalent 01100100

Sign bit 0 (Negative)

One’s complement of expo-
nent bits

 0011011

Binary value of exponent bits
(excess-64 notation)

 0011011

Decimal value of exponent bits
(excess-64 notation)

27

Actual value of exponent 27 - 64 = -37

11000011 1101 100011 111001

dec_digits[0] dec_digits[1] dec_digits[2] dec_digits[3]

Sign/Exponent Byte

Binary value in
dec_digits[0]

11000011

Sign bit 1 (Positive)

One’s complement of
exponent bits

Not necessary,
since sign bit is
positive
Dharma Systems Inc C-3

User Guide
So, the resulting numeric value is 0.123456 x 1003, or 123456.

Example 3-4: Interpreting NUMERIC Storage: Negative Exponent and Data

This example shows how the (base-10) value -123456.789 is stored in dec_digits.

Binary value of expo-
nent bits (excess-64
notation)

 1000011

Decimal value of
exponent bits
(excess-64 notation)

67

Actual value of expo-
nent

67 - 64 = 3

Data Value Bytes 1 2 3

Binary value 1100 100010 111000

Decimal equivalent 12 34 56

100’s complement of
resulting value

N/A N/A N/A

Base-100 digits 12 34 56

00111100 01011001 01000011 00101101 00010111 00001011

dec_digits[0] dec_digits[1] dec_digits[2] dec_digits[3] dec_digits[4] dec_digits[5]

Sign/Exponent Byte

Binary value in
dec_digits[0]

00111100

Sign bit 0 (Negative)

One’s complement of
exponent bits

11000011

Binary value of expo-
nent bits (excess

64 notation) 1000011

Decimal value of expo-
nent bits (excess-64
notation)

67

Actual value of expo-
nent

67 - 64 = 3

Data Value Bytes 1 2 3 4 5

Binary value 1011000 1011000 101100 10110 1010

Decimal equivalent 88 66 44 22 10

Sign/Exponent Byte
C-4 Dharma Systems Inc

Storing NUMERIC Data Directly
So, the resulting numeric value is - 0.1234567890 x 1003, or - 123456.789

100’s complement of
resulting value

12 34 56 78 90

Base-100 digits 12 34 56 78 90
Dharma Systems Inc C-5

User Guide
C-6 Dharma Systems Inc

Appendix D

Glossary
D.1 TERMS

add [an ODBC data source]
Make a data source available to ODBC through the Add operation of the ODBC
Administrator utility. Adding a data source tells ODBC where a specific database
resides and which ODBC driver to use to access it. Adding a data source also invokes
a setup dialog box for the particular driver so you can provide other details the driver
needs to connect to the database.

cardinality
Number of rows in a result table.

client
Generally, in client/server systems, the part of the system that sends requests to serv-
ers and processes the results of those requests.

client/server configuration
The version of the Dharma SDK Desktop that implements a network ODBC architec-
ture. In client/server configuration, the ODBC tool and the Dharma SDK ODBC
Driver run on Windows or UNIX clients, while the Dharma SDK Server library runs
on the UNIX or Windows server hosting the proprietary storage system.

data dictionary
Another term for system catalog.

Dharma SDK Server
The executable that results from building an implementation of the storage interfaces
with the SQL engine library. To get started with the Dharma SDK, you can build a
Dharma SDK Server from the supplied sample implementation of the storage inter-
faces. Eventually, you will build a Dharma SDK Server from your own implementa-
tion of the storage system to provide access to a proprietary storage system.

data source
See ODBC data source

desktop configuration
The version of the Dharma SDK that implements a "single-tier" ODBC architecture.
In the desktop configuration, the ODBC tool, the Dharma SDK software, and the pro-
prietary data all reside on the same Windows XP or 2000 computer.

dharma
The default owner name for all system tables in a Dharma database. Users must qual-
ify references to system tables as dharma.table-name.

field handle
Dharma Systems Inc D-1

User Guide
A handle that identifies storage for data stored in columns defined with the SQL
LONG VARCHAR or LONG VARBINARY data type. Implementations create field
handles when the SQL engine calls the dhcs_tpl_insert routine. (This is in contrast to
conventional data-type columns, for which the SQL engine passes actual values to the
insert routine.) Similarly, for fetch routines, implementations return field handles
instead of the actual long data values.

handle
A temporary identifier for database objects. Implementations generate handles when
the SQL engine calls routines to open tables, indexes, table scans, and index scans, or
to access long data-type columns. The SQL engine uses the handle on subsequent
calls to scan, fetch, insert, and update operations.

index handle
A handle that identifies an index open for updating. Implementations generate index
handles when the SQL engine calls dhcs_ix_open. The SQL engine passes index han-
dles to dhcs_ix_insert, dhcs_ix_delete, and dhcs_ix_close.

info type
An argument the SQL engine supplies when it calls the dhcs_rss_get_info storage
interface. The various info types describe a storage manager's support for indexes.

metadata
Data that details the structure of tables and indexes in the proprietary storage system.
The SQL engine stores metadata in the system catalog.

ODBC application
Any program that calls ODBC functions and uses them to issue SQL statements.
Many vendors have added ODBC capabilities to their existing Windows-based tools.

ODBC data source
In ODBC terminology, a specific combination of a database system, the operating sys-
tem it uses, and any network software required to access it. Before applications can
access a database through ODBC, you use the ODBC Administrator to add a data
source -- register information about the database and an ODBC driver that can connect
to it -- for that database. More than one data source name can refer to the same data-
base, and deleting a data source does not delete the associated database.

ODBC driver
Vendor-supplied software that processes ODBC function calls for a specific data
source. The driver connects to the data source, translates the standard SQL statements
into syntax the data source can process, and returns data to the application. The
Dharma SDK ODBC Driver provides access to proprietary storage systems underly-
ing the ODBC server.

ODBC driver manager
A program that routes calls from an application to the appropriate ODBC driver for a
data source.

primary key
D-2 Dharma Systems Inc

Glossary
A subset of the fields in a table, characterized by the constraint that no two records in
a table may have the same primary key value, and that no fields of the primary key
may have a null value. Primary keys are specified in a CREATE TABLE statement.

query expression
The fundamental element in SQL syntax. Query expressions specify a result table
derived from some combination of rows from the tables or views identified in the
FROM clause of the expression. Query expressions are the basis of SELECT, CRE-
ATE VIEW, and INSERT statements

result set
Another term for result table.

result table
A temporary table of values derived from columns and rows of one or more tables that
meet conditions specified by a query expression.

row identifier
Another term for tuple identifier.

scan handle
A handle that identifies an index or table open for scan operations. Implementations
generate scan handles when the SQL engine calls dhcs_tpl_scan_open or
dhcs_ix_scan_open. The SQL engine passes scan handles to dhcs_tpl_scan_fetch,
dhcs_tpl_scan_close, dhcs_ix_scan_fetch, and dhcs_ix_scan_close.

search condition
The SQL syntax element that specifies a condition that is true or false about a given
row or group of rows. Query expressions and UPDATE statements can specify a
search condition. The search condition restricts the number of rows in the result table
for the query expression or UPDATE statement. Search conditions contain one or
more predicates. Search conditions follow the WHERE or HAVING keywords in
SQL statements.

selectivity
The fraction of a table's rows returned by a query.

server
Generally, in client/server systems, the part of the system that receives requests from
clients and responds with results to those requests.

SQL engine
The core component of the Dharma SDK Server. The SQL engine receives requests
from the Dharma SDK ODBC Driver, processes them, and returns results. To build a
Dharma SDK Server, you link implemented storage interfaces with the SQL engine
library file $TPEROOT/lib/libserver.a.

storage interfaces
Template C routines provided with the Dharma SDK for implementing access to pro-
prietary storage systems. The SQL engine calls the routines to access and manipulate
data in a proprietary storage system. A proprietary storage system must implement
supplied templates to map the storage interfaces to the underlying storage system.
Dharma Systems Inc D-3

User Guide
Once filled in for a particular storage system, the completed stubs are called storage
managers.

storage manager
A completed implementation of the Dharma SDK storage interfaces. A storage man-
ager receives calls from the SQL engine and accesses the underlying proprietary stor-
age system to retrieve and store data.

storage system
The proprietary database system that underlies a storage manger. The Dharma SDK
provides a SQL interface to a storage system through the SQL engine and its stub
interfaces.

stub interfaces
Another term for storage interfaces.

stubs
Another term for storage interfaces.

system catalog
Tables created by the SQL engine that store information about tables, columns, and
indexes that make up the database. By default, the SQL engine creates and manages
the system catalog independently of the proprietary storage system. The storage man-
ager can choose to manage the system catalog by setting the
DH_DYNAMIC_METADATA environment variable.

system tables
Another term for system catalog.

table handle
A handle that identifies a table open for non-scan operations. Implementations gener-
ate table handles when the SQL engine calls dhcs_tpl_open. The SQL engine passes
table handles to dhcs_tpl_insert, dhcs_tpl_delete, dhcs_tpl_update, dhcs_tpl_fetch
and dhcs_tpl_close.

tid
Another term for tuple identifier.

transaction
A group of operations whose changes can be made permanent or undone only as a
unit. Once implementations add the ability to change data in the proprietary storage
system, they must also implement transaction management to protect against data cor-
ruption.

tuple identifier
A unique identifier for a tuple (row) in a table. Storage managers return a tuple identi-
fier for the tuple that was inserted after an insert operation. The SQL engine passes a
tuple identifier to the delete, update, and fetch stubs to indicate which tuple is affected.
The SQL scalar function ROWID and related functions return tuple identifiers to
applications.

view
D-4 Dharma Systems Inc

Glossary
A virtual table that recreates the result table specified by a SELECT statement. No
data is stored in a view, but other queries can refer to it as if it were a table containing
data corresponding to the result table it specifies.

Dharma Systems Inc D-5

User Guide
D-6 Dharma Systems Inc

Index
A
Accessing data algorithm 3-3
Accessing data, indexed access 3-15
Accessing metadata 3-8
Accessing proprietary data 1-4
Adding ODBC data source 2-23
Adding ODBC data source names 2-10
Adding records 3-23
Algorithm for accessing data 3-3
B
Benefits of using DataLink SDK 1-4
BETWEEN, range operators 5-43, 6-97
Building the client/server executable 3-37
C
Catalog tables B-1
Client/server

building the server configuration 3-36
executable 3-37

Client/server configuration 1-1, 2-10
development components 2-14, 2-17
directoris and files 2-13
renaming the sample implementation 2-18
sample implementation 2-18

Closing connections 3-10
Configuration files, network 2-22
Configuring the DataLink SDK server 3-34
Connecting to proprietary storage system 3-9
Connections, closing 3-10
Creating a release kit, client/server 4-2
Creating a release kit, desktop 4-1
Creating indexes on long data 3-31
Creating the data dictionary 2-20, 3-35, 3-38
D
Data defintions 3-25
Data dictionary

creating 2-20, 3-38
creating and loading 3-35
location 3-40
TPE_DATADIR 3-40

Data formats
mapping 3-2
mapping proprietary access methods 3-3
proprietary 3-2

Data sources
adding names 2-10

Data sources, adding 2-23

Data structures
dhcs_data_t 5-1
dhcs_fld_desc_t 5-1
dhcs_fld_list_t 5-1, 6-1
dhcs_fldl_val_t 5-1
dhcs_fv_item_t 5-1
dhcs_keydesc_t 5-1
dhcs_kfld_desc_t 5-1
storage interface 5-1, 6-1

Data type support
creating indexes 3-31
long data 3-28
storing long data 3-30, 3-31

DataLink SDK
accessing proprietary data 1-4
benefits 1-4
client/server 2-10
client/server configuration 1-1
client/server development components 2-14, 2-17
desktop configuration 1-1, 2-3
dhdaemon, restarting 3-38
dhdaemon, starting 2-18
dhdaemon, stopping 3-36
DLL 3-35
implementation 3-1, 3-4
installing development components 2-11
lite version 1-3
loading metadata 2-9
main directory 3-40
overview 1-1
professional version 1-3
required software 2-1
restarting the dhdaemon server process 3-38
runtime variables 3-40
server utility reference A-1
server, building 3-34
starting the dhdaemon server process 2-18
starting the server on UNIX 2-19
starting the server on Windows NT 2-19
stopping the dhdaemon server process 3-36
supported operating systems 2-1

Definitions, data 3-25
Deleting records 3-23
Desktop configuration 1-1, 2-3

development components 2-5
directoris and files 2-4
installing development components 2-3
renaming 2-8
Index-i

Development implementation 3-4
DH_DYNAMIC_METADATA 3-41
DH_Y2K_CUTOFF 3-42, 3-44
dhcs_abort_trans, syntax 5-71
dhcs_add_table, syntax 5-9
dhcs_alloc_tid, syntax 5-66
dhcs_assign_tid, syntax 5-66
dhcs_begin_trans, syntax 5-71
dhcs_char_to_tid, syntax 5-67
dhcs_commit_trans, syntax 5-72
dhcs_compare_data, syntax 5-82
dhcs_compare_tid, syntax 5-68
dhcs_conv_data, syntax 5-83
dhcs_create_index, syntax 5-24
dhcs_data_t, description 5-1
dhcs_data_t, syntax 5-7
dhcs_desc_t, syntax 5-2
dhcs_drop_index, syntax 5-26
dhcs_drop_table, syntax 5-11
dhcs_fld_desc_t, description 5-1
dhcs_fld_list_t, description 5-1, 6-1
dhcs_fld_list_t, syntax 5-2
dhcs_fldl_val_t, description 5-1
dhcs_free_tid, syntax 5-69
dhcs_fv_item_t, description 5-1
dhcs_fv_item_t, syntax 5-6
dhcs_get_colinfo, syntax 5-57
dhcs_get_data, syntax 5-52
dhcs_get_error_mesg, syntax 5-73
dhcs_get_idxinfo, syntax 5-59
dhcs_get_metainfo, syntax 5-61
dhcs_get_tblinfo, syntax 5-63
dhcs_ix_close, syntax 5-27
dhcs_ix_insert, syntax 5-29
dhcs_ix_open, syntax 5-30
dhcs_ix_scan_close, syntax 5-32
dhcs_ix_scan_fetch, syntax 5-32
dhcs_ix_scan_open, syntax 5-37
dhcs_keydesc_t, description 5-1
dhcs_keydesc_t, syntax 5-4
dhcs_kfld_desc_t, description 5-1
dhcs_kfld_desc_t, syntax 5-4
dhcs_put_data, syntax 5-54
dhcs_put_hdl, syntax 5-55
dhcs_rss_cleanup, syntax 5-74
dhcs_rss_get_info, syntax 5-75
dhcs_rss_init, syntax 5-79
dhcs_tid_to_char, syntax 5-45, 5-70
dhcs_tpl_close, syntax 5-12
dhcs_tpl_delete, syntax 5-13
dhcs_tpl_fetch, syntax 5-13
dhcs_tpl_insert, syntax 5-15
dhcs_tpl_open, syntax 5-17
dhcs_tpl_scan_close, syntax 5-18

dhcs_tpl_scan_fetch, syntax 5-18
dhcs_tpl_scan_open, syntax 5-19
dhcs_tpl_update, syntax 5-21, 5-22
dhdaemon

restarting 3-38
starting 2-18
stopping 3-36
syntax A-1

Directories and files for the desktop configuration 2-4
Directories, main 3-40
DLL, DataLink SDK 3-35
Dynamic metadata 3-41
Dynamic metadata interfaces 5-57
Dynamic support for metadata 3-32
E
Editing network configuration files 2-22
Error messages

implementation-specific 3-14
Executable, client/server 3-37
F
Functions

miscellaneous 5-73
utility 5-82

G
Glossary D-1
I
Implementation strategy 3-1
Implementing the DataLink SDK 3-4
Index identifiers, returning 3-18
Index interfaces 5-24
Index scans 3-19
Indexed access 3-15
Indexes on user tables 3-33
Indicating support for metadata 3-33
Installing development components for the DataLink SDK
2-11
Installing the Dharma ODBC dirver 2-22
Interfaces

dynamic metadata 5-57
index 5-24
long data types 5-52
transaction 5-71
tuple identifier 3-13, 5-66

Interoperability
tools 1-4

Interpreting NUMERIC data C-2
L
Lite version of the DataLink SDK 1-3
Loading metadata 2-9, 2-20

for proprietary storage system 3-39
with md_script 3-8

Loading the data dictionary 3-35
Index-ii

Log file output 3-41
Long data type

creating indexes 3-31
retrieving 3-29
storing 3-30, 3-31
support 3-28

Long data types interfaces 5-52
M
Managing transactions 3-24
Mapping proprietary access methods 3-3
Mapping proprietary data formats 3-2
md_script, loading metadata 3-8
mdcreate

create a data dictionary A-3
creating the data dictionary 2-20
syntax A-3

mdsql
load metadata A-4
syntax A-4

Metadata
access 3-8
dynamic 3-41
dynamic interfaces 5-57
dynamic support 3-32
indicating support 3-33
loading 2-9, 2-20
loading for proprietary storage system 3-39
loading with md_script 3-8
loading with mdsql A-4
syntax of mdsql A-4

Miscellaneous functions 5-73
Modifying records 3-23
N
Network configuration files, editing 2-22
NUMERIC data

determining sign and exponent C-2
internal storage format C-1
interpreting C-2
storing C-1

O
ODBC

adding data source names 2-10
adding data sources 2-23
installing the ODBC driver 2-22
loading the odbc driver 2-22

Opening and closing tables 3-15
Operating systems, supported 2-1
P
pcntreg

adding registry entries A-2
syntax A-2

Professional version of the DataLink SDK 1-3

Proprietary data formats 3-2
Proprietary data, accessing 1-4
R
Range operators, BETWEEN 5-43, 6-97
Read access 3-11
Records, adding, modifying, deleting 3-23
Release kit

client/server 4-2
desktop 4-1

Required software 2-1
Retrieving data 3-14
Retrieving data through index scans 3-19
Retrieving long data 3-29
Returniing index identifiers 3-18
Runtime variables 3-40
S
Sample implementationi, renamiing 2-18
Server

configuring 3-34
Server utility reference A-1
Services file 2-19
Setting runtime variables 3-40
Software, required 2-1
sqlnw services file name 2-19
Starting the server on UNIX 2-19
Starting the server on Windows NT 2-19
Storage format for NUMERIC data C-1
Storage interface data structures 5-1, 6-1
Storage system

connecting 3-9
loading metadata 3-39

Storing NUMERIC data C-1
Support for metadata 3-33
Supported operating systems 2-1
System catalog table definitions B-2
System catalog tables B-1
T
Table identifiers 3-9, 3-10
Table scans 3-14
Tables

catalog tables B-1
opening and closing 3-15
system catalog table defintions B-2
user 3-33

Tools interoperability 1-4
TPE_DATADIR 3-40
TPE_DFLT_DATE 3-42
TPEROOT

specifying 3-40
variable 2-17

TPESQLDBG 3-41
Transaction interfaces 5-71
Index-iii

Transaction management 3-24
Tuple identifier interfaces 3-13, 5-66
Tuple interfaces 5-9
U
UNIX

dhdaemon 2-19
User tables 3-33
Utility functions 5-82
V
Variables

DH_Y2K_CUTOFF 3-42, 3-44
TPE_DFLT_DATE 3-42
TPEROOT 2-17
TPESQLDBG 3-41

W
Windows NT

dhdaemon 2-19
Write access 3-20
Index-iv

	User Guide
	Introduction
	Purpose of This Manual
	Audience
	Structure
	Conventions
	Related Documentation

	Chapter 1
	Introduction
	1.1 Overview
	1.2 Client/Server and Desktop Configurations
	1.2.1 Client/Server Configuration
	1.2.2 Desktop configuration

	1.3 Storage Interfaces
	1.4 SQL Feature Support
	1.5 Benefits
	1.6 Implementing Access to Proprietary Data

	Chapter 2
	Getting Started
	2.1 Introduction
	2.2 Required Software
	2.3 Desktop
	2.3.1 Installing Development Components
	2.3.2 Renaming the Desktop Sample Implementation
	2.3.2.1 SDK for C stubs
	2.3.2.2 SDK for Java stubs

	2.3.3 Loading Metadata
	2.3.4 Adding Names of ODBC Data Sources

	2.4 Client/Server
	2.4.1 Installing Development Components
	2.4.2 Setting the TPEROOT Variable on the Server System
	2.4.3 Renaming the Client/Server Sample Implementation
	2.4.3.1 SDK for C stubs
	2.4.3.2 SDK for Java stubs

	2.4.4 Starting the dhdaemon Dharma SDK Server Process
	2.4.4.1 Edit the Services File to Add the sqlnw Service Name
	2.4.4.2 UNIX Server Systems: Start the Dhdaemon Process
	2.4.4.3 Windows Server Systems: Start the Dhdaemon Service

	2.4.5 Loading Metadata
	2.4.5.1 Creating the Data Dictionary with mdcreate
	2.4.5.2 Loading Metadata With isql

	2.5 Dharma SDK ODBC Driver
	2.5.1 Introduction
	2.5.2 Installing and Configuring the Dharma SDK ODBC Driver
	2.5.2.1 Installing the Dharma SDK ODBC Driver
	2.5.2.2 Editing Network Configuration Files
	2.5.2.3 Adding the ODBC Data Sources for the Dharma SDK Server
	2.5.2.4 Handling of Connection Information

	2.6 Dharma SDK JDBC Driver
	2.6.1 Installing the JDBC Driver

	2.7 Dharma SDK .NET Data Provider
	2.7.1 Introduction
	2.7.2 Required Software
	2.7.3 Installing from a Distribution Kit on any Client System

	Chapter 3
	Implementation Strategy
	3.1 Introduction
	3.2 Philosophy
	3.2.1 Two Common Proprietary Formats
	3.2.2 Mapping Proprietary Data to a Relational View
	3.2.3 Mapping Proprietary Access Methods to Relational Indexes
	3.2.4 Developing an Algorithm for Accessing Data

	3.3 Stages of Implementation
	3.3.1 Stage 1: Metadata Access
	3.3.1.1 Creating md_script, the SQL Script to Load Metadata
	3.3.1.2 Initializing Connections to the Proprietary Storage System
	3.3.1.3 Partially Implementing dhcs_add_table to Return Table Identifiers
	3.3.1.4 Closing Connections With dhcs_rss_cleanup
	3.3.1.5 Testing Stage 1 Implementation

	3.3.2 Stage 2: Read Access
	3.3.2.1 Implementing the Tuple Identifier Interfaces
	3.3.2.2 Retrieving Data Through Table Scans
	3.3.2.3 Returning Implementation-Specific Error Messages
	3.3.2.4 Opening and Closing Tables
	3.3.2.5 Supplying Table Cardinality Data To The Optimizer
	3.3.2.6 Testing Stage 2 Implementation

	3.3.3 Stage 3: Indexed Access
	3.3.3.1 Responding to Index Property Information Calls
	3.3.3.2 Partially Implementing index creation to Return Index Identifiers
	3.3.3.3 Retrieving Data Through Index Scans
	3.3.3.4 Supplying Index Selectivity Data to the Optimizer
	3.3.3.5 Testing Stage 3 Implementation

	3.3.4 Stage 4: Write Access
	3.3.4.1 Adding, Modifying, and Deleting Records
	3.3.4.2 Managing Transactions
	3.3.4.3 Testing Stage 4 Implementation

	3.3.5 Stage 5: Data Definition
	3.3.5.1 Testing Stage 5 Implementation

	3.3.6 Stage 6: Storage System Scalar Functions and Procedures
	3.3.7 Stage 7: Long Data Type Support
	3.3.7.1 Retrieving Long Data
	3.3.7.2 Storing Long Data
	3.3.7.3 Creating Indexes on Long Data-Type Columns
	3.3.7.4 Testing Stage 7 Implementation

	3.3.8 Stage 8: Dynamic Metadata Support
	3.3.8.1 Indicating Support for Dynamic Metadata
	3.3.8.2 Providing Detail on User Tables and Indexes
	3.3.8.3 Testing Stage 8 Implementation

	3.4 Building and Configuring the Dharma SDK Server
	3.4.1 Desktop
	3.4.1.1 Building the Desktop Dharma SDK DLL
	3.4.1.2 Creating and Loading the Data Dictionary

	3.4.2 Client/Server
	3.4.2.1 Stopping the dhdaemon Process
	3.4.2.2 Building the Client/Server Dharma SDK Server Executable
	3.4.2.3 Restarting the dhdaemon Service
	3.4.2.4 Creating the Data Dictionary
	3.4.2.5 Loading Metadata for the Proprietary Storage System

	3.5 Setting Dharma SDK Runtime Variables
	3.5.1 Specifying the Main Dharma SDK Directory with TPEROOT
	3.5.2 Specifying Location of the Data Dictionary with TPE_DATADIR
	3.5.3 Indicating Support for Dynamic Metadata with DH_DYNAMIC_METADATA
	3.5.4 Thread Safety of Dharma SDK ODBC Driver
	3.5.5 Controlling Log File Output with TPESQLDBG
	3.5.6 Setting Default Date Format With TPE_DFLT_DATE
	3.5.7 Controlling Interpretation of Years in Date Literals With DH_Y2K_CUTOFF

	Chapter 4
	Creating a Release Kit for Distributing the Dharma SDK Server
	4.1 Introduction
	4.2 Desktop
	4.3 Client/Server
	4.4 Providing jar file for SDK for Java

	Chapter 5
	‘C’ Stubs Storage Interface Reference
	5.1 Common Data Structures
	5.1.1 Table Field Lists: dhcs_fld_list_t and dhcs_fld_desc_t
	5.1.1.1 dhcs_fld_list_t
	5.1.1.2 dhcs_desc_t

	5.1.2 Index Key Lists: dhcs_keydesc_t and dhcs_kfld_desc_t
	5.1.2.1 dhcs_keydesc_t
	5.1.2.2 dhcs_kfld_desc_t

	5.1.3 Field Value Lists: dhcs_fldl_val_t and Associated Structures
	5.1.3.1 dhcs_fldl_val_t
	5.1.3.2 dhcs_fv_item_t
	5.1.3.3 dhcs_data_t

	5.2 Table Interfaces
	5.2.1 dhcs_add_table
	5.2.2 dhcs_drop_table
	5.2.3 dhcs_tpl_close
	5.2.4 dhcs_tpl_delete
	5.2.5 dhcs_tpl_fetch
	5.2.6 dhcs_tpl_insert
	5.2.7 dhcs_tpl_open
	5.2.8 dhcs_tpl_scan_close
	5.2.9 dhcs_tpl_scan_fetch
	5.2.10 dhcs_tpl_scan_open
	5.2.11 dhcs_tpl_update
	5.2.12 dhcs_tpl_get_card

	5.3 Index Interfaces
	5.3.1 dhcs_create_index
	5.3.2 dhcs_drop_index
	5.3.3 dhcs_ix_close
	5.3.4 dhcs_ix_delete
	5.3.5 dhcs_ix_insert
	5.3.6 dhcs_ix_open
	5.3.7 dhcs_ix_scan_close
	5.3.8 dhcs_ix_scan_fetch
	5.3.9 dhcs_ix_scan_open
	5.3.10 dhcs_ix_get_sel

	5.4 Storage System Defined Functions And Procedures
	5.4.1 dhcs_get_procinfo

	5.5 Long Data Types Interfaces
	5.5.1 dhcs_get_data
	5.5.2 dhcs_put_data
	5.5.3 dhcs_put_hdl

	5.6 Dynamic Metadata Interfaces
	5.6.1 dhcs_get_colinfo
	5.6.2 dhcs_get_idxinfo
	5.6.3 dhcs_get_metainfo
	5.6.4 dhcs_get_tblinfo

	5.7 Tuple Identifier Interfaces
	5.7.1 dhcs_alloc_tid
	5.7.2 dhcs_assign_tid
	5.7.3 dhcs_char_to_tid
	5.7.4 dhcs_compare_tid
	5.7.5 dhcs_free_tid
	5.7.6 dhcs_tid_to_char

	5.8 Transaction Interfaces
	5.8.1 dhcs_abort_trans
	5.8.2 dhcs_begin_trans
	5.8.3 dhcs_commit_trans

	5.9 Miscellaneous Functions
	5.9.1 dhcs_get_error_mesg
	5.9.2 dhcs_rss_cleanup
	5.9.3 dhcs_rss_get_info
	5.9.4 dhcs_rss_init
	5.9.5 dhcs_rss_initcall

	5.10 Utility Functions
	5.10.1 dhcs_compare_data
	5.10.2 dhcs_conv_data

	Chapter 6
	Java Stubs Storage Interface Reference
	6.1 Common Classes
	6.1.1 DharmaRecord
	6.1.1.1 DharmaRecord
	Syntax
	Returns
	Arguments
	Description

	6.1.1.2 setFieldValue
	Syntax
	Returns

	6.1.1.3 getFieldValue
	Syntax
	Returns
	Arguments

	6.1.1.4 setNull
	Syntax
	Returns
	Arguments

	6.1.1.5 isNull
	Syntax
	Returns
	Arguments

	6.1.1.6 setRecordID
	Arguments
	Description

	6.1.1.7 getRecordID
	Syntax
	Returns
	Description

	6.1.2 RecordID
	6.1.2.1 RecordID
	Syntax
	Returns
	Arguments
	Description

	6.1.2.2 RecordID
	Syntax
	Returns
	Arguments
	Description

	6.1.2.3 setRecordID
	Syntax
	Returns
	Arguments
	Description

	6.1.2.4 setRecordID
	Syntax
	Returns
	Arguments
	Description

	6.1.2.5 setRecordID
	Syntax
	Returns
	Arguments
	Description

	6.1.2.6 getString
	Syntax
	Returns
	Arguments
	Description

	6.1.2.7 getLong
	Syntax
	Returns
	Arguments
	Description

	6.1.2.8 compareRecordID
	Returns
	Arguments
	Description

	6.1.2.9 isRecordIDSet
	Syntax
	Returns
	Arguments
	Description

	6.1.3 DharmaArray
	6.1.3.1 DharmaArray
	Syntax
	Returns
	Arguments
	Description

	6.1.3.2 getNthElement
	Syntax
	Returns
	Arguments
	Description

	6.1.3.3 getSize

	6.1.4 FieldValue
	6.1.4.1 FieldValue
	6.1.4.2 FieldValue
	6.1.4.3 FieldValue
	6.1.4.4 getFieldID
	6.1.4.5 setFieldID
	6.1.4.6 getTableFieldID
	6.1.4.7 setTableFieldID
	6.1.4.8 getMaxLength
	6.1.4.9 setMaxLength
	6.1.4.10 getDataLength
	6.1.4.11 setDataLength
	6.1.4.12 getWidth
	6.1.4.13 setWidth
	6.1.4.14 getScale
	6.1.4.15 setScale
	6.1.4.16 getData
	6.1.4.17 setData
	6.1.4.18 getTypeID
	6.1.4.19 setTypeID
	6.1.4.20 isNull
	6.1.4.21 setNull

	6.1.5 FieldValues
	6.1.5.1 FieldValues
	6.1.5.2 getNth

	6.1.6 TableField
	6.1.6.1 TableField
	6.1.6.2 getFieldName
	6.1.6.3 setFieldName
	6.1.6.4 getFieldID
	6.1.6.5 setFieldID
	6.1.6.6 getTypeID
	6.1.6.7 setTypeID
	6.1.6.8 isNullable
	6.1.6.9 setNullable
	6.1.6.10 setNotNullable
	6.1.6.11 getMaxLength
	6.1.6.12 setMaxLength
	6.1.6.13 getWidth
	6.1.6.14 setWidth
	6.1.6.15 getScale
	6.1.6.16 setScale

	6.1.7 TableFields
	6.1.7.1 TableFields
	6.1.7.2 getNth

	6.1.8 IndexField
	6.1.8.1 IndexField
	6.1.8.2 getFieldID
	6.1.8.3 setFieldID
	6.1.8.4 getTypeID
	6.1.8.5 setTypeID
	6.1.8.6 getSortOrder
	6.1.8.7 setSortOrder
	6.1.8.8 getTableFieldID
	6.1.8.9 setTableFieldID
	6.1.8.10 getFieldName
	6.1.8.11 setFieldName

	6.1.9 IndexFields
	6.1.9.1 IndexFields
	6.1.9.2 getNth

	6.1.10 DharmaLongVarCharData
	6.1.10.1 DharmaLongVarCharData
	6.1.10.2 DharmaLongVarCharData
	6.1.10.3 isNull
	6.1.10.4 setNull
	6.1.10.5 setNotNull
	6.1.10.6 getLength
	6.1.10.7 getRemainingLength
	6.1.10.8 setLength
	6.1.10.9 getData
	6.1.10.10 setData

	6.1.11 DharmaLongVarBinaryData.
	6.1.11.1 DharmaLongVarBinaryData
	6.1.11.2 DharmaLongVarBinaryData
	6.1.11.3 isNull
	6.1.11.4 setNull
	6.1.11.5 setNotNull
	6.1.11.6 getLength
	6.1.11.7 getRemainingLength
	6.1.11.8 setLength
	6.1.11.9 getData
	6.1.11.10 setData

	6.1.12 ProcedureColumn
	6.1.12.1 ProcedureColumn
	6.1.12.2 getParamID
	6.1.12.3 setParamID
	6.1.12.4 getDataType
	6.1.12.5 setDataType
	6.1.12.6 getFieldName
	6.1.12.7 setFieldName
	6.1.12.8 getColumnType
	6.1.12.9 setColumnType
	6.1.12.10 getNullable
	6.1.12.11 setNullable
	6.1.12.12 getMaxLengt h
	6.1.12.13 setMaxLength
	6.1.12.14 getWidth
	6.1.12.15 setWidth
	6.1.12.16 getScale
	6.1.12.17 setScale
	6.1.12.18 getDefaultType
	6.1.12.19 setDefaultType
	6.1.12.20 getDefaultValue
	6.1.12.21 setDefaultValue

	6.1.13 ProcedureColumns
	6.1.13.1 ProcedureColumns
	6.1.13.2 getNth
	6.1.13.3 getSize

	6.1.14 ProcedureMetaData
	6.1.14.1 getOwnerName
	6.1.14.2 setOwnerName
	6.1.14.3 getProcedureHasResultSet
	6.1.14.4 setProcedureHasResultSet
	6.1.14.5 getReturnValue
	6.1.14.6 setReturnValue
	6.1.14.7 getParameterInformation
	6.1.14.8 setParameterInformation
	6.1.14.9 setResultSetInformation
	6.1.14.10 getResultSetInformation
	6.1.14.11 getProcedureID
	6.1.14.12 setProcedureID
	6.1.14.13 setProcedureName
	6.1.14.14 getProcedureName
	6.1.14.15 setConstant
	6.1.14.16 setProcedureMinParamCount
	6.1.14.17 setProcedureMaxParamCount
	6.1.14.18 setProcedureHasReturnValue

	6.2 Table Interfaces
	6.2.1 TableHandle
	6.2.1.1 insert
	6.2.1.2 getRecord
	6.2.1.3 update
	6.2.1.4 delete
	6.2.1.5 getCardinality
	6.2.1.6 close

	6.2.2 TableScanHandle
	6.2.2.1 getNextRecord
	6.2.2.2 close

	6.3 Index Interfaces
	6.3.1 IndexHandle
	6.3.1.1 insert
	6.3.1.2 delete
	6.3.1.3 getSelectivity
	6.3.1.4 close

	6.3.2 IndexScanHandle
	6.3.2.1 getNextRecord
	6.3.2.2 close

	6.4 Storage System Interfaces
	6.4.1 StorageEnvironment
	6.4.1.1 createStorageEnvironment
	6.4.1.2 createStorageManagerHandle
	6.4.1.3 beginTransaction
	6.4.1.4 rollbackTransaction
	6.4.1.5 commitTransaction
	6.4.1.6 close

	6.4.2 StorageManagerHandle
	6.4.2.1 createTable
	6.4.2.2 dropTable
	6.4.2.3 createIndex
	6.4.2.4 dropIndex
	6.4.2.5 getTableHandle
	6.4.2.6 getIndexHandle
	6.4.2.7 getTableScanHandle
	6.4.2.8 getIndexScanHandle
	6.4.2.9 getStorageManagerInfo
	6.4.2.10 getProcedureHandle
	6.4.2.11 getProcedureMetaData
	6.4.2.12 getNumberOfTables
	6.4.2.13 getTableInfo
	6.4.2.14 getTableColumnInfo
	6.4.2.15 getIndexInfo
	6.4.2.16 getIndexColumnInfo
	6.4.2.17 Close

	6.5 Long Data Type Interfaces
	6.5.1 LongDataHandle
	6.5.1.1 putLongVarCharData
	6.5.1.2 putLongVarBinaryData
	6.5.1.3 getLongVarCharData
	6.5.1.4 getLongVarBinaryData

	6.6 Procedure & Function Interfaces
	6.6.1 ProcedureHandle
	6.6.1.1 execute
	6.6.1.2 getNextRecord
	6.6.1.3 close

	6.7 Miscellaneous classes
	6.7.1 StorageCodes
	6.7.2 DharmaStorageException
	6.7.2.1 DharmaStorageException
	6.7.2.2 getErrorMessage
	6.7.2.3 getErrorMessage

	6.8 Mapping Between SQL and Java Data Types

	Appendix A
	Server Utility Reference
	A.1 Overview
	A.2 dhdaemon
	A.3 pcntreg
	A.4 mdcreate
	A.5 Isql
	A.6 Environment Variables

	Appendix B
	System Catalog Tables
	B.1 Overview
	B.2 System Catalog Tables Definitions

	Appendix C
	Storing NUMERIC Data Directly
	C.1 Overview
	C.2 Internal Storage Format for NUMERIC Data
	C.3 Interpreting NUMERIC Data Stored in Internal Format
	C.3.1 Interpreting the Sign/Exponent Byte of dec_digits
	C.3.2 Interpreting the Data Values Bytes of dec_digits
	C.3.3 Complete Examples: Interpreting Sign/Exponent and Data Bytes of dec_digits

	Appendix D
	Glossary
	D.1 Terms

